- •Список экзаменационных вопросов по дисциплине «Биология» для специальностей 31.05.01 Лечебное дело и 31.05.02 Педиатрия
- •1. Биология как наука о живых системах.
- •2. Возникновение жизни на земле.
- •3. Свойства и уровни организации живых систем.
- •4. Клеточная теория.
- •8. Организация наследственного материала в клетке.
- •9. Организация наследственного материала в клетке.
- •10. Организация наследственного материала в клетке.
- •11. Реализация биологической информации в клетке.
- •12. Реализация биологической информации в клетке.
- •13.Реализация биологической информации в клетке.
- •14. Клетка как открытая система.
- •15. Поток вещества и энергии в клетке
- •16. Существование клеток во времени.
- •17. Существование клеток во времени.
- •18. Размножение организмов.
- •19. Гаметогенез.
- •20.Мейоз.
- •21. Оплодотворение.
- •22. Биологические аспекты репродукции человека.
- •23.Основы генетики.
- •24.Основы генетики.
- •25. Закономерности наследования признаков.
- •26. Закономерности наследования признаков.
- •27. Хромосомная теория наследственности.
- •28. Хромосомная детерминация пола.
- •29. Закономерности наследования признаков.
- •30. Закономерности наследования признаков.
- •31. Закономерности наследования признаков.
- •32. Закономерности наследования признаков.
- •33. Изменчивость.
- •34. Изменчивость.
- •35. Изменчивость.
- •36. Изменчивость.
- •37. Изменчивость.
- •38. Мутагенез.
- •39. Генетика человека.
- •40.Генетика человека.
- •41. Генетика человека.
- •42. Основы медицинской генетики.
- •43. Индивидуальное развитие.
- •44. Эмбриогенез.
- •45. Эмбриогенез.
- •46. Эмбриогенез.
- •47. Эмбриогенез.
- •48. Индивидуальное развитие.
- •49. Постнатальное развитие человека.
- •50. Биологические и социальные аспекты старения и смерти.
- •51. Восстановительные процессы в организме.
- •52. Биологические ритмы.
- •53. Эволюционное учение.
- •54. Эволюционное учение.
- •55.Эволюционное учение.
- •56. Эволюционное учение.
- •57. Эволюционное учение.
- •58. Эволюционное учение.
- •59. Популяционная структура человечества.
- •60. Популяционная структура человечества.
- •61. Эволюционное учение.
- •62. Эволюция групп организмов.
- •63. Эволюция групп организмов.
- •64. Эволюционная морфология.
- •65. Общие закономерности филогенеза.
- •66. Общие закономерности филогенеза.
- •67.Органический мир как результат процесса эволюции.
- •68. Антропогенез.
- •69. Антропогенез.
- •70. Антропогенез.
- •71. Филогенез опорно-двигательного аппарата хордовых.
- •72. Филогенез пищеварительной системы хордовых.
- •73. Филогенез дыхательной системы хордовых.
- •74. Филогенез нервной системы хордовых.
- •75. Филогенез кровеносной системы хордовых.
- •76. Филогенез мочеполовой системы хордовых.
- •77. Биосфера.
- •78. Биосфера.
- •79. Биосфера.
- •80. Человек и биосфера.
- •81. Экология как наука.
- •82. Экология как наука.
- •83. Экология человека.
- •110. Аскарида.
- •111. Власоглав.
40.Генетика человека.
а) Сущность популяционно-статистического метода. Задачи, решаемые с помощью него в генетике человека.
В медико-биологических исследованиях достаточно часто возникает вопрос установления количественных соотношений индивидуумов с различными генотипами по определенному гену или определения распространенности какого-то гена (в т.ч. патологического) среди населения. Решение этого вопроса возможно благодаря сформулированному в 1908 году, независимо друг от друга, английским математиком Харди (Hardy) и немецким врачом Вайнбергом (Weinberg), закону генетической стабильности популяции. Этот закон в честь ученых, сформулировавших его, получил название закона Харди-Вайнберга.
В медицинской генетике популяционно-статистический метод используется при изучении наследственных болезней населения, частоты нормальных и патологических генов, генотипов и фенотипов в популяциях различных местностей, стран и городов. Кроме того, этот метод изучает закономерности распространения наследственных болезней в разных по строению популяциях и возможность прогнозировать их частоту в последующих поколениях.
Популяционно-статистический метод используется для изучения:
а) частоты генов в популяции, включая частоту наследственных болезней;
б) закономерности мутационного процесса;
б) Закон Харди-Вайнберга: содержание и математическое выражение. Условия идеальной популяции.
В идеальной популяции частота гомозиготных организмов, имеющих доминантный признак, равняется квадрату частоты доминантного гена; частота гетерозиготных организмов равняется удвоенному произведению частот доминантного и рецессивного гена; частота гомозиготных организмов, имеющих рецессивный признак, равняется квадрату частоты рецессивного гена, и это соотношение остается неизменным во всех поколениях пока не будут нарушены определенные условия (условия идеальной популяции).
В идеальной популяции из поколения в поколение сохраняется строго определенное соотношение частот доминантных и рецессивных генов (1), а также соотношение частот генотипических классов особей (2).
p + q = 1, (1) р2 + 2pq + q2 = 1, (2)
где p — частота встречаемости доминантного гена А; q — частота встречаемости рецессивного гена а; р2 — частота встречаемости гомозигот по доминанте АА; 2pq — частота встречаемости гетерозигот Аа; q2 — частота встречаемости гомозигот по рецессиву аа.
Условия идеальной популяции:
Большая численность (>500 организмов)
Свободное скрещивание (панмиксия)
Отсутствие давления элементарных эволюционных факторов (мутации, миграции, ЕО)
Понятно, что идеальных популяций в природе не существует, в реальных популяциях закон Харди-Вайнберга используется с поправками.
в) Сущность молекулярно-генетического метода генетики человека.
Молекулярно-генетический метод нашел широкое применение с 70-80 гг. в связи с прогрессом в молекулярной генетике и успехами в изучении генома человека.
Молекулярно-генетический подход основывается на изучении строения ДНК (выделение ДНК, рестрикция, электрофорез, блоттинг, гибридизация). В его основе лежат современные методики работы с ДНК или РНК – полимеразная цепная реакция, секвенирование.
Конечный итог молекулярно-генетического метода заключается в выявлении изменений в определенных участках ДНК, гена или хромосомы. Данный метод применяется в диагностике наследственной патологии, различных заболеваний, в судебной медицине при идентификации личности и т.д.
г) Сущность цитогенетического метода и его применение в генетике человека.
Цитогенетический метод – метод изучения кариотипа человека, основанный на микроскопическом изучении хромосом. Цитогенетический метод активно начал использоваться в практике с 1956 года, когда Дж.-К. Тио и А.Леван установили, что диплоидное число хромосом человека равно 46 (23 пары). В 1959 г. французские ученые Д. Лежен, Р. Тюрпен и М. Готье установили хромосомную природу болезни Дауна. В последующие годы были описаны многие другие хромосомные синдромы.
С помощью цитогенетического метода все хромосомы по положению центромеры и длины плеч разделены на три типа: метацентрические, субметацентрические, акроцентрические.
Однако хромосомы не очень легко отличать одну от другой. Цитогенетики с целью унификации методов идентификации хромосом на конференции в 1960 г. в г. Денвере (США) предложили классификацию, учитывающую величину хромосом и расположение центромеры. Патау в том же году дополнил эту классификацию и предложил разделить хромосомы на 7 групп.
В конце 60-х годов прошлого века были разработаны методы дифференциального окрашивания хромосом человека, которые показали, что каждая пара хромосом имеет свой специфический характер чередования неокрашенных, светло- и темноокрашенных участков. Этот метод дифференциального окрашивания хромосом был положен в основу Парижской классификации хромосом (1971 г.), по которой хромосомы идентифицируются по наличию в них эу- и гетерохромных участков. Для каждой пары аутосом характерна индивидуальная последовательность распределения и закономерность расположения светлых (эухроматиновых) и темных (гетерохроматиновых) участков.
Цитогенетический метод используется для определения истинного пола ребенка и диагностике заболеваний, связанных с изменением числа хромосом и их структуры.
В норме кариотип человека включает 46 хромосом - 22 пары аутосом и две половые хромосомы. Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей во время мейоза.
