Добавил:
stepanenkoiaroslavwork@gmail.com Добрый день, если вы воспользовались предоставленной информацией и она вам пригодилась, то это супер. Если захотите отблагодарить, то лучшей благодарностью будет написать мне на почту, приложив ваши готовые работы по другим предметам. Возможно они послужат кому-то хорошим примером. 😉😉😉 Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Английский язык для моряков / Автоматизация судов.doc
Скачиваний:
0
Добавлен:
22.12.2025
Размер:
2.93 Mб
Скачать

Как устанавливают температурные датчики?

Термопары могут быть медленно действующие (рис.20) или быстро действующие (рис.21). Медленно действующую (инерционную) термопару используют для измерения температуры внутри материала, а быстро действующую — для измерения температуры на поверхности материала.

Отверстия для конических корпусов датчиков сверлят диаметром, который меньше на 0,1 мм диаметра конуса датчика. Отверстия развертывают конической разверткой таким образом, чтобы головка конического корпуса датчика возвышалась над поверхностью на 2,5-2,8мм, когда корпус слегка запрессован в отверстии. Затем конический корпус забивают молотком через медную проставку.

Термокоаксиальные кабели тол­щиной 1 мм помещены внутри трубки диаметром 6 мм, что предотвращает тонкие концы термопроводов от повреждений и тряски. Перед вводом в соединительную коробку термокоаксиальные кабели закручивают спиралью для удобного выполнения соединений.

В конечной части вблизи соединителя используют медные провода, так как они более гибкие, чем провода «поверхностной» термопары.

Как проверяют температурные датчики?

Температурные датчики должны быть проверены, прежде чем они будут припаяны к соединителям или другим деталям. Необходимо определить полярность термопроводов.

Наиболее точный метод определения полярности проводов — это нагрев датчика и подсоединение его к микро вольтметру. Метод показывает правильность полярности проводов и работу термодатчика.

В чем состоит принцип работы преобразователей сопротивления, называемых терморезисторами?

Терморезистор — это полупроводниковый прибор (его изготавливают из полупроводниковых материалов с большим отрицательным температурным коэффициентом), в котором используется зависимость электрического сопротивления полупроводников от температуры.

Изменение сопротивления Rт полупроводника при изменении температуры характеризуется зависимостью:

Rт = Аехр (В/Т).

где: А - постоянная, зависящая от физических свойств полупроводника, размеров и формы терморезистора;

В - постоянная, зависящая от физических свойств полупроводника;

Т - температура терморезистора, °С.

Температурный коэффициент α полупроводникового терморезистора отрицательный. Он достигает значений от -2,5 до 4% °С, что в 6-10 раз больше температурного коэффициента металлов, и зависит от температуры: α = В/Т2.

К ак устроены терморезисторы?

На рис.22 показано устройство терморезисторов серий ММТ и КМТ. Терморезисторы типов ММТ-1 и КМТ-1 (рис.22,а) представляют собой полупроводниковый стержень 1, покрытый эмалевой краской, с контактными колпачками 2 и выводами 3. Эти выводы терморезисторов могут быть использованы только в сухих помещениях. Терморезисторы типов ММТ-4 и КМТ-4 (рис.22,б) смонтированы в металлический корпус 6 и герметизированы. Они могут быть применены в условиях любой влажности и любой среды, не являющейся агрессивной по отношению к корпусу. Герметизация осуществляется стеклом 8 и оловом 9. Стержень 5 в терморезисторе типа ММТ-4 обернут металлической фольгой 4. Токоотвод 7 выполнен из никелевой проволоки. Эти терморезисторы выпускаются на номинальные значения сопротивления от 1 до 200 кОм (при 20°С) и могут быть использованы для работы в диапазоне температур от -100 до 129°С.