Добавил:
stepanenkoiaroslavwork@gmail.com Добрый день, если вы воспользовались предоставленной информацией и она вам пригодилась, то это супер. Если захотите отблагодарить, то лучшей благодарностью будет написать мне на почту, приложив ваши готовые работы по другим предметам. Возможно они послужат кому-то хорошим примером. 😉😉😉 Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Полезная информация для электромехаников / Судовые Электроэнергетические Системы для Механиков

.pdf
Скачиваний:
0
Добавлен:
22.12.2025
Размер:
12.3 Mб
Скачать

Рис. 13.1

На рис. 13.1 приведена схема соединения однофазных сельсинов при индикаторном режиме работы.

В схеме используются сельсин - датчик и сельсин - приемник, представляющие собой два совершенно одинаковых сельсина.

ОВд и ОВп - обмотки возбуждения сельсина - датчика и сельсина - приемника. Сд и Сп -катушки синхронизации.

Если роторы обоих сельсинов ориентированны одинаковым образом относительно обмоток возбуждения, то в каждой паре катушек индуктируются одинаковые ЭДС. Катушки роторов обоих сельсинов соединены таким образом, что ЭДС в них направлены встречно друг другу, и ток в соединительных проводах отсутствует. Такое положение сельсинов называется согласованным.

Если необходимо осуществить дистанционную передачу утла поворота к механизму, требующему большого вращающего момента, то используется схема трансформаторного режима работы сельсинов (рис. 13.2).

Рис. 13.2

Обмотка возбуждения сельсина - датчика подключается к источнику однофазного тока.

Катушки синхронизации датчика соединены с катушками синхронизации приемника, который работает как сельсин - трансформатор. Катушки синхронизации

СП являются первичной обмоткой, а статорная обмотка ОВП - вторичной (выходной) обмоткой. Она через усилитель у соединяется с исполнительным двигателем. Исполнительный двигатель через редуктор связан с валом сельсина - приемника.

Обмотка возбуждения датчика образует пульсирующий по горизонтали магнитный поток. В катушках СД индуктируются ЭДС, которые создают токи в роторных катушках датчика и приемника. Каждая катушка синхронизации сельсина - приемника создает свой магнитный поток, а результирующий магнитный поток имеет такое же направление, как и поток в сельсине

- датчике.

В обмотке возбуждения сельсина - приемника индуктируется ЭДС, величина и фаза которой зависят от утла и направления результирующего потока обмотки синхронизации приемника. Ось обмотки возбуждения приемника сдвинута на 90* относительно оси обмотки возбуждения датчика, поэтому, когда магнитный поток направлен горизонтально, в обмотке приемника ОВП не возникает никакой ЭДС. Это согласованное положение в трансформаторном режиме. Исполнительный механизм и сельсин - датчик не нуждаются в механической связи и могут находиться на большом расстоянии друг от друга.

Электрические системы дистанционной передачи утла поворота или вращения механизмов используются в радиолокаторах, в радиопеленгаторах и другой специальной технике.

Поворотные трансформаторы. Индуктосины. Редуктосины.

Поворотным, или вращающимся, трансформатором называется информационная электрическая машина, амплитуда выходного напряжения которой является функцией входного напряжения и углового положения ротора. Поворотные трансформаторы конструктивно сходны с асинхронными машинами с фазным ротором и контактными кольцами. К ним обычно подводится питание со стороны статора от источника переменного напряжения. На обмотке ротора (на выходе) получают напряжение, представляющее собой определенную функцию утла поворота ротора.

Обычно требуется, чтобы это напряжение было пропорционально sin, cos. В соответствии с этим, различают синусные, косинусные и синус - косинусные трансформаторы. На рис. 13.3 представлена принципиа\ьная схема поворотного трансформатора с двумя взаимно -перпендикулярными обмотками на статоре и на роторе.

Рис. 13.3

Индукционный редуктосин представляет собой бесконтактный синускосинусный поворотный трансформатор. Первичная и две вторичные обмотки размещены на статоре. Ротор выполнен в виде зубчатого кольца из электротехнической стали.

Редуктосины не имеют скользящих контактов, что повышает надежность и точность их работы. При питании первичной обмотки синусоидальным напряжением со вторичных обмоток снимают два напряжения, амплитуды которых изменяются в

функции утла поворота ротора. Повороту ротора на угол, равный зубцовому делению, соответствует полный период изменения амплитуды выходного напряжения (зубцовым делением ротора называется расстояние между зубцами ротора).

Индуктосином называют бесконтактную информационную машину без магнитопровода с печатными первичной и вторичной обмотками, возбуждаемую однофазным напряжением. Выходное напряжение индуктосина является функцией углового положения ротора. Конструктивно индуктосин представляет собой два диска (ротор и статор) из изоляционного материа\а (керамика, стекло). Один из дисков соединяется с валом, угловое положение которого подлежит изменению, второй неподвижен. На торцевых поверхностях, обращенных друг к другу, диски несут печатные обмотки.

Поворотные трансформаторы используются в электрических счетно-решающих системах, в следящих системах в качестве датчиков утла, в преобразователях "уголкод", в системах числового и программного управления металлорежущими станками.

Тахогенераторы.

Тахогенератором называется информационная электрическая машина, предназначенная для выработки электрических сигналов, пропорциональных частоте вращения ротора. Тахогенераторы могут быть постоянного и переменного тока. Тахогенераторы постоянного тока представляют собой маломощные генераторы постоянного тока с независимым возбуждением или с возбуждением от постоянных магнитов. Выходное напряжение тахогенератора пропорционально частоте вращения ротора.

Асинхронный тахогенератор по конструктивному исполнению подобен асинхронному двигателю с полым немагнитным ротором. Он состоит из статора и неподвижного сердечника ротора, между которыми, в воздушном зазоре вращается тонкий полый немагнитный цилиндр. Принципиальная схема асинхронного тахогенератора показана на рис. 13.4.

Рис. 13.4

На статоре генератора размещены две обмотки, пространственно смещенные относительно друг друга на 90*. Одна из них, обмотка возбуждения В, подключена к источнику синусоидального напряжения, другая обмотка, являющаяся генератором Г, включается на измерительный прибор или на измерительную схему. Обмотка возбуждения создает пульсирующий магнитный поток Фв.

При неподвижном роторе ЭДС в генераторной обмотке равна нулю, так как вектор магнитного потока Фв перпендикулярен оси этой обмотки. При вращении цилиндра пульсирующий магнитный поток индуктирует в нем ЭДС вращения. Под действием ЭДС в цилиндре появляются токи, направления которых указаны на рис.

13.4. Токи создают по оси генераторной обмотки пульсирующий поперечный поток Фп. Этот поток индуктирует в генераторной обмотке ЭДС, пропорциональную частоте

вращения цилиндра. Асинхронные тахогенераторы, как и тахогенераторы постоянного тока, используются для измерения скорости вращения ва\ов, а также для вырабатывания ускоряющих или замедляющих сигналов в автоматических устройствах.

Шаговые электродвигатели.

Шаговым электродвигателем называется вращающийся электродвигатель с дискретными угловыми перемещениями ротора, осуществляемыми за счет импульсов сигна\а управления.

Шаговые, или импульсные, электродвигатели преобразуют электрические импульсы в фиксированные угловые перемещения - "шаги".

Шаговые двигатели находят применение в различных механизмах, рабочие органы которых должны перемещаться дискретно. К таким механизмам относятся киносъемочная и проекционная аппаратура, механизмы подачи различных станков, устройства перемещения валков прокатных станов и др.

Шаговые электродвигатели с активным ротором имеют ротор, выполненный из постоянных магнитов (рис. 13.5). Статор имеет выступающие полюсы с сосредоточенной обмоткой в виде катушек на каждом полюсе. Питание статорных катушек производится импульсами напряжения, поступающими с электронного коммутатора.

Рис. 13.5

Основы электроники. В приложении (решили, что нет смысла повторять материал).

В нескольких главах да и книгах невозможно описать всю электронику. Поэтому мы с коллегами решили выделить наиболее важные понятия из

занимательного мира электроники которым и будут посвящены следующие главы книги.

**Задачи этого курса 1. Базовая часть

2. Основные компоненты / Принципы работы

3. Методы измерений

**Напутствие

Помните, - слона едят по кусочку -, не торопитесь осваивайте главу за главой, не разобравшись в простых компонентах освоить материал будет очень сложно.

В приложении (решили, что нет смысла повторять материал). Проверка диодов и транзисторов Два способа, которые помогут достаточно точно определить «здоровье»

транзистора и диода. Один основан на проверке сопротивления, другой - напряжения. Советуем последовательно применить оба.

Сначала определяем сопротивление между выводами всех транзисторов и диодов.

Транзистор исправен, если сопротивление, замеренное между двумя его любыми выводами, больше нуля, но меньше 500 кипоОм. При этом оно должно измениться,

если поменять местами концы проводов, идущих от прибора. Признак неисправности - крайние положения («0» или «бесконечность») стрелки. Для этих замеров нужно тарировать прибор на измерение минимальных величин.

Диод исправен, если при проверке его сопротивления с переменой местами концов проводов, идущих от прибора, мы в одном случае получим не более 100-200 Ом, в другом - сотни кипоОм. О неисправности свидетельствуют одинаковые показания независимо от того, будет пи это «0» или «бесконечность».

Затем - проверка вторым способом. Для нее нужно собрать две очень простые схемы (рис. 1 и 2). В качестве источника напряжения подойдет обычная автомобильная аккумуляторная батарея. Первая схема предназначена для проверки транзисторов. Величина нагрузочного сопротивления «R» - порядка 40-50 Ом. Если все исправно, напряжение на выводах эмиттер - коллектор должно быть больше «0»

Схема для проверки транзисторов: Т - транзистор; Э - эмиттер; К - коллектор; Б - база; R - сопротивление;

П - прибор; А - аккумуляторная батарея.

Схема для проверки диодов; Д - диод.

Другой вариант; Это просто сделать при помощи несложной схемы с лампочкой 3 В и батарейкой

КБС для карманного фонарика. Испытательная цепь включается между базой и коллектором транзистора. При этом провода от его выводов нужно будет отпаять. «Минус» батарейки соединяется с базой, а «плюс» - с коллектором транзистора. Если он исправен - лампочка горит. При изменении полярности - гаснет. Аналогично проверяется и эмиттерный переход полупроводника, только «плюс» идет не на коллектор, а на эмиттер. При проверке диода нужно выпаивать один из его выводов. Если лампочка горит - все в порядке, если не горит, или же горит независимо от полярности присоединения батарейки - прибор неисправен.

г

Изоляция электрических машин в эксплуатации подвергается постепенному износу - старению под воздействием нагревания, механических нагрузок,

электрического напряжения (в особенности у высоковольтных машин), действия масел, химических веществ, влаги, пыли и т. п. Внешними признаками старения являются потемнение цвета изоляционных материалов, хрупкость их (действие нагрева), наличие трещин в лаковой пленке (нагрев и механические усилия), разрушения лаковой пленки (действие химических веществ масла, пыли), разбухание изоляционных гильз и пазовой изоляции (нагрев и электрическое напряжение).

Следует отметить, что внешний осмотр и измерение сопротивления изоляции (мегомметром) дают лишь некоторую ориентировку, а не точную картину состояния изоляции.

Для определения состояния изоляции машин высокого напряжения следует, кроме указанных выше, применять специальные методы определения состояния изоляции (измерение диэлектрических потерь, снятие кривых абсорбции и ряд других

).

Уход за изоляцией заключается в периодической чистке (специальными моющими жидкостями под небольшим давлением ), продувке, а также в периодической пропитке соответствующими лаками (профилактическая пропитка).

Одной из основных характеристик изоляционных материалов является их пробивное напряжение. Величина минимального напряжения, при котором происходит пробой изоляционного материала толщиной 1 мм, определяет его электрическую прочность.

Если изоляция состоит из слоев различных материалов, то напряжение, действующее на такую изоляцию, распределяется по слоям неравномерно, и может оказаться, что один из слоев, на который приходится наибольшее напряжение (на единицу толщины), будет пробит.

После этого все напряжение ляжет на остальные слои, и они также будут пробиты.

В частности, из-за неплотного прилегания слоев изоляции образуются воздушные прослойки, в которых под воздействием напряжения возможна ионизация (разложение) воздуха, приводящая к постепенной порче соседних слоев изоляции.

Воздушные прослойки резко ухудшают теплопроводность изоляции, что повышает перегрев обмоток и снижает срок службы изоляции, а также способствует проникновению влаги внутрь изоляции и порче ее.

Поэтому изоляцию электрических машин следует производить так, чтобы по возможности избежать воздушных прослоек в ней. С этой целью все поры изоляции заполняются специальными составами (лаками или компаундами), для чего изоляция подвергается сушке и последующей пропитке, опрессовке и т. д.

Места, где секции выходят из пазов, являются наиболее слабыми, так как, кроме усиленной электрической нагрузки, в этом месте наиболее часты механические повреждения изоляции. Изоляционный материал может не только пробиваться, т. е. пропускать ток пробоя через свою толщу, но при определенном напряжении, действующем вдоль его поверхности, пропускать ток поверхностного разряда (перекрытие).

Поэтому изоляция всех обмоток или деталей должна быть выполнена так, чтобы были соблюдены как определенные толщины, так и определенные расстояния по поверхности изоляции между токоведущей частью и корпусом или другой токоведущей частью.

С этой целью усиленная изоляция, имеющая место в пазу, должна выступать и иметь так называемый "вылет" за пределы паза на определенную длину а, зависящую от напряжения. Величина а определяется по формуле:

а = 10+ U/200 (мм)

где U - рабочее напряжение, В.

Точно так же изоляционные конусы коллектора должны выступать из-под пластин на определенную величину, зависящую от напряжения ("вылет"), пальцы щеткодержателей должны иметь определенную длину и т. д.

Весьма важной характеристикой изоляционных материалов является их нагревостойкость. Нагревостойкость характеризуется наибольшей температурой, при которой данный изоляционный материал может длительно работать.

Поскольку нагрев машины (ее температура) растет с увеличением мощности, которую она отдает, допустимая для изоляции наибольшая рабочая температура определяет мощность машины и, следовательно, использование активных материалов (меди, электротехнической стали).

Применение более нагревостойких изоляционных материалов позволяет повысить мощность машины без увеличения ее размеров и веса. Предельно допустимая температура подшипников установлена равной 80° С для подшипников скольжения и 95° С для подшипников качения. Следует помнить, что увеличение температуры обмоток сверх указанных пределов (см. классы изоляции) резко сокращает срок службы изоляции. Так, увеличение температуры на 10° С сокращает срок службы приблизительно в 2 раза.

Внекоторых специальных случаях с целью уменьшения веса и размеров машины (тяговые, краново-подъемные двигатели и т. п.) допустима работа при более высоких температурах за счет сокращения срока службы.

Вкачестве основных изоляционных материалов для изоляции обмоток и деталей (пазов, обмоткодержателей, коллекторов) применяются лакоткани, т. е. ткани (хлопчатобумажные и шелковые к\асс А, стеклянные — к\ассы В, F, Н), пропитанные соответствующими лаками, и слюдяная изоляция (миканиты, классы В, F, Н).

Электрокартон, бумаги, хлопчатобумажные, шелковые, стеклянные и асбестовые ткани и ленты применяются для защиты указанных выше изоляционных материалов от механических повреждений и для придания обмоткам большей прочности.

Основной изоляций обмоток могут применяться: электрокартон, бумага, хлопчатобумажные ленты и другие волокнистые материалы.

Волокнистые материалы находят широкое применение в качестве межвитковой изоляции (изоляция обмоточных проводов, прок\адки ит. п). Все волокнистые материалы могут применяться только в пропитанном виде.

Значительное место в электромашиностроении занимают синтетические (искусственные) материалы: смолы, пластические массы. К числу таких материалов принадлежат: различные пресс-материалы и пресс-порошки для опрессовки коллекторов, контактных колец, пальцев щеткодержателей, изготовления панелей, коробок, фасонных изоляционных деталей.

Применение пластмасс (Кб, стекловолокнит, АГ4 и др.) для изготовления коллекторов и кольцевых коллекторов (узла с контактными кольцами) позволяет получить ряд больших преимуществ по экономии материала пластин и колец, упрощению технологии, увеличению надежности конструкций. В основном применяются термореактивные пластмассы (фенопласты - бакелиты резольного и новолачного типа, аминопласты, кремнийорганические пресс-материалы), затвердевающие в процессе прессования и нагрева.

Лаки и компаунды служат для пропитки и покрытия обмоток. С помощью жидких термореактивных смол - компаундов обмотка может быть пропитана и в специальных формах залита так, что получается литая (монолитная) изоляция. Такая изоляция обладает весьма высокой влаго и водостойкостью и механической прочностью. Двигатели с литой изоляцией могут длительно работать в воде. Для заливки применяются полиэфирные (КМГС), эпоксидные, полиуретановые, акриловые (МБК) компаунды.

Слоистые пластинки представляют собой изоляцию из нескольких слоев бумаги, ткани, стек\откани, пропитанных смолами и опрессованных. К таким материалам относятся гетинакс, текстолит, стек\отекстолит, идущие на изготовление (путем механической обработки) различных изоляционных деталей (крайние изоляционные листы пакета активной стали, доски, панели, изоляционные диски, пазовые кшнья и т. п.), а также бакелизированная бумага и ткань, идущие на изготовление (путем формовки и прессования) изоляционных гильз и фасонных изоляционных деталей.

Следует упомянуть также о гетинаксе с запрессованной стальной сеткой и пластмассе с металлическим порошком - металлопластмассе, применяемых для изготовления так называемых магнитных клиньев. Такие кшнья, закрывая пазы активной стали, одновременно увеличивают и выравнивают магнитную проводимость воздушного зазора, что снижает потери и увеличивает коэффициент мощности асинхронных двигателей.

Пленочные материалы - триацетатная пленка (класс изоляции А, Е), лавсановая пленка (класс изоляции Е, В), фторопластовая пленка (класс Н) в сочетании с электрокартоном, стеклотканью или слюдой позволяют получить весьма прочную и влагостойкую пазовую изоляцию. Фторопласт применяется также для получения нагревостойкой изоляции проводов.

Клей типа БФ применяется для склейки листов пакета активной стали. Специальная стеклянная лента, пропитанная полиэфирной смолой, применяется вместо стальной проволоки для бандажировки якорей и роторов. Необходимо отметить быстрое развитие пластмасс, которые получают исключительно высокие физико-механические и технологические свойства. За счет более широкого их применения может быть достигнут существенный прогресс в конструкциях и технологии электромашиностроения.

Если машина в результате тяжелых условий эксплуатации (перегрузки, высокой температуры, влажности, наличия в воздухе пыли, кислот и т. п.) преждевременно выходит из строя вследствие порчи изоляции, а возможность улучшить эксплуатационные условия отсутствует, следует при ремонте принять меры к усилению свойств изоляции.

В частности, применением слюдяных, стеклянных, стек\ослюдяных изоляционных изделий и нагревостойких лаков, разработанных нашей промышленностью, можно повысить нагревостойкость обмоток и увеличить мощность машины.

Применением соответствующих лаков может быть достигнуто повышение стойкости обмотки против масла, химических паров и частиц, попадающих на изоляцию. Следует иметь в виду, что слюдяные и в особенности стеклослюдяные изделия дороги, и поэтому применять их следует лишь тогда, когда решение вопроса другим путем нецелесообразно.

Замер сопротивления изоляции

Заземление — электрическое соединение корпуса оборудования с корпусом судна. Заземление состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте

с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемое устройство с заземлителем. Заземлитель может быть простым кабелем или жгутом из медной проволоки либо сложным комплексом элементов специальной формы.

Все. что обязательно надо знать про заземление.

Качество заземления определяется значением электрического сопротивления цепи заземления, которое можно снизить, увеличивая площадь контакта или проводимость среды.

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухо заземленной нейтралью, в том числе шины, должны иметь буквенное обозначение РЕ и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов.

Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Ошибки в устройстве заземления Неправильные РБ-проводники

1.заземлитель малого сечения

2.не подготовленная поверхность а как следствие плохой контакт между корпусом оборудования и корпусом судна

Объединение рабочего нуля и РБ-проводника

Другим часто встречающимся нарушением является объединение рабочего нуля

иРЕ-проводника за точкой их разделения (если она есть) по ходу распределения энергии. Такое нарушение может привести к появлению довольно значительных токов по РЕ-проводнику (который не должен быть токонесущими в нормальном состоянии), (для судов с изолированной нейтралью - 3 Ф + N + РЕ)

Крайне опасным является следующий способ "создания" PE-проводника: прямо в розетке определяется рабочий нулевой проводник и ставится перемычка между ним и PE-контактом розетки. Таким образом, PE-проводник нагрузки, подключенной к этой розетке, оказывается соединенным с рабочим нулем.

Опасность данной схемы в том, что на заземляющем контакте розетки, а следовательно, и на корпусе подключенного прибора появится фазный потенциал, при выполнении любого из следующих условий:

- Разрыв (рассоединение, перегорание и т.д.) нулевого проводника на участке между розеткой и щитом (а также далее, вплоть до точки заземления PENпроводника);

- Перестановка местами фазного и нулевого (фазный вместо нулевого и наоборот) проводников, идущих к этой розетке.

Защитная функция заземления

Защитное действие заземления основано на двух принципах:

- Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

- Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом.

Работа заземления при неисправностях электрооборудования Типичный случай неисправности электрооборудования — попадание фазного напряжения на металлический корпус прибора вследствие нарушения изоляции. В зависимости от того, какие защитные мероприятия реализованы, возможны следующие варианты:

-Корпус не заземлен (наиболее опасный вариант). Корпус прибора будет находиться под фазным потенциалом и это никак не будет обнаружено. Прикосновение к такому неисправному прибору может быть смертельно опасным.

-Корпус заземлен. Если ток утечки по цепи фаза-корпус-заземлитель достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то предохранитель сработает и отключит цепь. Данный вариант недостаточно безопасен, так как при высоком сопротивлении заземлителя и больших номиналах предохранителей потенциал на заземленном проводнике может достигать довольно значительных величин. Например, при сопротивлении заземлителя 4 Ом и предохранителе номиналом 25 А потенциал может достигать 100 вольт.

Типы заземления TN-C

Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном АЭГ

(AEG, Allgemeine Elektricitats-Gesellschaft) в 1913 году. Рабочий ноль и РЕ-проводник

(Protection Earth) в этой системе совмещены в один провод. Самым большим недостатком было образование линейного напряжения (в 1,732 раза выше фазного) на корпусах электроустановок при аварийном обрыве нуля.

Несмотря на это, на сегодняшний день можно встретить данную систему заземления в постройках стран бывшего СССР.

TN-S

На замену условно опасной системы TN-C в 1930-х была разработана система TN- S (фр. Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры.

Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Киргхофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.

Также можно наблюдать систему TN-C-S, где разделений нулей происходит в середине линии, однако в случае обрыва нулевого провода до точки разделения корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.