- •Часть 1
- •26.02.06 «Эксплуатация судового электрооборудования и средств автоматики»
- •26.02.05 «Эксплуатация судовых энергетических установок»
- •Содержание
- •Введение
- •Цели, задачи дисциплины, место дисциплины в учебном процессе
- •Краткие исторические сведения о развитии материаловедения
- •1 Классификация и строение материалов
- •1.1 Классификация материалов
- •1.2 Металлы и неметаллы. Особенности атомно-кристаллического строения
- •1.3 Понятие об изотропии и анизотропии
- •1.4 Дефекты кристаллического строения
- •1.5 Методы исследования структуры металлов и сплавов
- •2 Формирование структуры литых материалов
- •2.1 Сущность процессов кристаллизации металлов и сплавов
- •2.2 Механизм и закономерности кристаллизации металлов
- •2.3 Условия получения мелкозернистой структуры
- •2.4 Особенности строения металлического слитка
- •2. Дилатометрический метод.
- •Магнитный анализ.
- •2.5 Понятие о ликвации
- •2.6 Аллотропические превращения железа при нагреве и охлаждении. Гистерезис
- •2.7 Магнитные превращения
- •2.8 Получение монокристаллов
- •2.9 Свойства аморфных металлов
- •3 Основные равновесные диагарммы состояния двойных сплавов. Связь между составом, строением и свойствами сплавов
- •3.1 Понятие о сплавах и методах их получения
- •3.2 Основные понятия в теории сплавов
- •3.3 Особенности строения, кристаллизации и свойств сплавов
- •3.4 Кристаллизация сплавов.
- •3.5 Диаграмма состояния
- •3.6 Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии
- •3.7 Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии
- •3.8 Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •3.9 Диаграмма состояния сплавов, компоненты которых образуют химические соединения.
- •3.10 Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии
- •3.11 Связь между свойствами сплавов и типом диаграммы состояния
- •4 Железоуглеродистые сплавы. Диаграмма состояния железо-углерод
- •4.1 Особенности диаграммы состояния железоуглеродистых сплавов.
- •4.2 Компоненты и фазы железоуглеродистых сплавов
- •4.3 Процессы при структурообразовании железоуглеродистых сплавов
- •4.4 Структуры железоуглеродистых сплавов
- •Термическая и химико-термическая обработка металлов и сплавов
- •5.1 Виды термической обработки
- •5.2 Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •1. Закалка в одном охладителе (v1)
- •2. Закалка в двух сферах или прерывистая (v2)
- •3. Ступенчатая закалка (v3)
- •4. Изотермическая закалка (v4)
- •5. Закалка с самоотпуском
- •6. Основное оборудование для термической обработки
- •5.3 Термическая обработка легированных сталей
- •5.4 Химико-термическая обработка стали
- •5.5 Назначение и технология видов химико-термической обработки
- •6 Классификация и маркировка сталей и чугунов. Их применение
- •6.1 Влияние углерода и примесей на свойства сталей
- •6.2 Классификация и маркировка сталей
- •6.3 Состав и сорта чугунов
- •7 Классификация и маркировка легированных сталей
- •7.1 Назначение легирующих элементов
- •7.2 Распределение легирующих элементов в стали
- •7.3 Принцип маркировки легированных сталей
- •7.4 Влияние элементов на полиморфизм железа
- •8 Цветные металлы и сплавы на их основе
- •8.1 Титан и его сплавы
- •8.2 Алюминий и его сплавы
- •8.3 Магний и его сплавы
- •8.4 Медь и ее сплавы
- •9 Композиционные материалы. Материалы порошковой металлургии
- •9.1 Композиционные материалы
- •9.2 Материалы порошковой металлургии
- •10 Пластические массы
- •10.1 Происхождение пластмасс
- •10.2 Преимущества пластмасс
- •10.3 Виды пластмасс
- •10.4 Определение типа пластика
- •11 Резиновые материалы
- •11.1 Состав и классификация резин
- •11.2 Получение изделий из резины
- •11.3 Классификация резиновых материалов по назначению и области применения
- •11.4 Факторы, влияющие на свойства резин в процессе эксплуатации
- •Контрольные вопросы
- •12 Стекло
- •12.1 Основные свойства стекла
- •12.2 Классификация стекол по назначению
- •12.3 Ситаллы
- •Контрольные вопросы
- •13 Керамические материалы
- •13.1 Общие сведения, классификация керамических материалов
- •Контрольные вопросы
- •Список рекомендуемой литературы
- •Оп.04 «материаловедение»
- •Часть 1
- •26.02.06 Эксплуатация судового электрооборудования и средств автоматики
- •26.02.05 Эксплуатация судовых энергетических установок
- •298309 Г. Керчь, Орджоникидзе, 123
2.2 Механизм и закономерности кристаллизации металлов
При соответствующем понижении температуры в жидком металле начинают образовываться кристаллики – центры кристаллизации или зародыши. Для начала их роста необходимо уменьшение свободной энергии металла, в противном случае зародыш растворяется.
Минимальный размер способного к росту зародыша называется критическим размером, а зародыш – устойчивым.
Переход из жидкого состояния в кристаллическое требует затраты энергии на образование поверхности раздела жидкость – кристалл. Процесс кристаллизации будет осуществляться, когда выигрыш от перехода в твердое состояние больше потери энергии на образование поверхности раздела. Зависимость энергии системы от размера зародыша твердой фазы представлена на рис. 2.3.
Зародыши с размерами равными и большими критического растут с уменьшением энергии и поэтому способны к существованию.
Рисунок 2.3 - Зависимость энергии системы от размера зародыша твердой фазы
Механизм кристаллизации представлен на рис.2.4.
Рисунок 2.4 - Модель процесса кристаллизации
Центры кристаллизации образуются в исходной фазе независимо друг от друга в случайных местах. Сначала кристаллы имеют правильную форму, но по мере столкновения и срастания с другими кристаллами форма нарушается. Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело.
Качественная схема процесса кристаллизации может быть представлена количественно кинетической кривой (рис.2.5).
Рисунок 2.5 - Кинетическая кривая процесса кристаллизации
Процесс вначале ускоряется, пока столкновение кристаллов не начинает препятствовать их росту. Объем жидкой фазы, в которой образуются кристаллы уменьшается. После кристаллизации 50 % объема металла, скорость кристаллизации будет замедляться.
Таким образом, процесс кристаллизации состоит из образования центров кристаллизации и роста кристаллов из этих центров.
В свою очередь, число центров кристаллизации (ч.ц.) и скорость роста кристаллов (с.р.) зависят от степени переохлаждения (рис. 2.6).
Рисунок 2.6 - Зависимость числа центров кристаллизации (а) и скорости роста кристаллов (б) от степени переохлаждения
Размеры образовавшихся кристаллов зависят от соотношения числа образовавшихся центров кристаллизации и скорости роста кристаллов при температуре кристаллизации.
При равновесной температуре кристаллизации ТS число образовавшихся центров кристаллизации и скорость их роста равняются нулю, поэтому процесса кристаллизации не происходит.
2.3 Условия получения мелкозернистой структуры
Стремятся к получению мелкозернистой структуры. Оптимальными условиями для этого являются: максимальное число центров кристаллизации и малая скорость роста кристаллов.
Размер зерен при кристаллизации зависит и от числа частичек нерастворимых примесей, которые играют роль готовых центров кристаллизации – оксиды, нитриды, сульфиды.
Чем больше частичек, тем мельче зерна закристаллизовавшегося металла.
Стенки изложниц имеют неровности, шероховатости, которые увеличивают скорость кристаллизации.
Мелкозернистую структуру можно получить в результате модифицирования, когда в жидкие металлы добавляются посторонние вещества – модификаторы,
По механизму воздействия различают:
Вещества не растворяющиеся в жидком металле – выступают в качестве дополнительных центров кристаллизации.
Поверхностно - активные вещества, которые растворяются в металле, и, осаждаясь на поверхности растущих кристаллов, препятствуют их росту.
