- •Часть 1
- •26.02.06 «Эксплуатация судового электрооборудования и средств автоматики»
- •26.02.05 «Эксплуатация судовых энергетических установок»
- •Содержание
- •Введение
- •Цели, задачи дисциплины, место дисциплины в учебном процессе
- •Краткие исторические сведения о развитии материаловедения
- •1 Классификация и строение материалов
- •1.1 Классификация материалов
- •1.2 Металлы и неметаллы. Особенности атомно-кристаллического строения
- •1.3 Понятие об изотропии и анизотропии
- •1.4 Дефекты кристаллического строения
- •1.5 Методы исследования структуры металлов и сплавов
- •2 Формирование структуры литых материалов
- •2.1 Сущность процессов кристаллизации металлов и сплавов
- •2.2 Механизм и закономерности кристаллизации металлов
- •2.3 Условия получения мелкозернистой структуры
- •2.4 Особенности строения металлического слитка
- •2. Дилатометрический метод.
- •Магнитный анализ.
- •2.5 Понятие о ликвации
- •2.6 Аллотропические превращения железа при нагреве и охлаждении. Гистерезис
- •2.7 Магнитные превращения
- •2.8 Получение монокристаллов
- •2.9 Свойства аморфных металлов
- •3 Основные равновесные диагарммы состояния двойных сплавов. Связь между составом, строением и свойствами сплавов
- •3.1 Понятие о сплавах и методах их получения
- •3.2 Основные понятия в теории сплавов
- •3.3 Особенности строения, кристаллизации и свойств сплавов
- •3.4 Кристаллизация сплавов.
- •3.5 Диаграмма состояния
- •3.6 Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии
- •3.7 Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии
- •3.8 Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •3.9 Диаграмма состояния сплавов, компоненты которых образуют химические соединения.
- •3.10 Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии
- •3.11 Связь между свойствами сплавов и типом диаграммы состояния
- •4 Железоуглеродистые сплавы. Диаграмма состояния железо-углерод
- •4.1 Особенности диаграммы состояния железоуглеродистых сплавов.
- •4.2 Компоненты и фазы железоуглеродистых сплавов
- •4.3 Процессы при структурообразовании железоуглеродистых сплавов
- •4.4 Структуры железоуглеродистых сплавов
- •Термическая и химико-термическая обработка металлов и сплавов
- •5.1 Виды термической обработки
- •5.2 Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •1. Закалка в одном охладителе (v1)
- •2. Закалка в двух сферах или прерывистая (v2)
- •3. Ступенчатая закалка (v3)
- •4. Изотермическая закалка (v4)
- •5. Закалка с самоотпуском
- •6. Основное оборудование для термической обработки
- •5.3 Термическая обработка легированных сталей
- •5.4 Химико-термическая обработка стали
- •5.5 Назначение и технология видов химико-термической обработки
- •6 Классификация и маркировка сталей и чугунов. Их применение
- •6.1 Влияние углерода и примесей на свойства сталей
- •6.2 Классификация и маркировка сталей
- •6.3 Состав и сорта чугунов
- •7 Классификация и маркировка легированных сталей
- •7.1 Назначение легирующих элементов
- •7.2 Распределение легирующих элементов в стали
- •7.3 Принцип маркировки легированных сталей
- •7.4 Влияние элементов на полиморфизм железа
- •8 Цветные металлы и сплавы на их основе
- •8.1 Титан и его сплавы
- •8.2 Алюминий и его сплавы
- •8.3 Магний и его сплавы
- •8.4 Медь и ее сплавы
- •9 Композиционные материалы. Материалы порошковой металлургии
- •9.1 Композиционные материалы
- •9.2 Материалы порошковой металлургии
- •10 Пластические массы
- •10.1 Происхождение пластмасс
- •10.2 Преимущества пластмасс
- •10.3 Виды пластмасс
- •10.4 Определение типа пластика
- •11 Резиновые материалы
- •11.1 Состав и классификация резин
- •11.2 Получение изделий из резины
- •11.3 Классификация резиновых материалов по назначению и области применения
- •11.4 Факторы, влияющие на свойства резин в процессе эксплуатации
- •Контрольные вопросы
- •12 Стекло
- •12.1 Основные свойства стекла
- •12.2 Классификация стекол по назначению
- •12.3 Ситаллы
- •Контрольные вопросы
- •13 Керамические материалы
- •13.1 Общие сведения, классификация керамических материалов
- •Контрольные вопросы
- •Список рекомендуемой литературы
- •Оп.04 «материаловедение»
- •Часть 1
- •26.02.06 Эксплуатация судового электрооборудования и средств автоматики
- •26.02.05 Эксплуатация судовых энергетических установок
- •298309 Г. Керчь, Орджоникидзе, 123
10 Пластические массы
10.1 Происхождение пластмасс
В XX веке человечество пережило синтетическую революцию, в его жизнь вошли новые материалы — пластмассы. Пластмассу можно смело считать одним из главных открытий человечества, без ее изобретения многие другие открытия были бы получены намного позже или их не было бы вовсе. Александр Паркс. Изобретатель первой пластмассы Первая пластмасса была изобретена в 1855 году британским металлургом и изобретателем Александром Парксом. Когда он решил найти дешевый заменитель дорогостоящей слоновой кости, из которой в то время делались бильярдные шары, вряд ли он мог себе представить, какое значение впоследствии приобретет полученный им продукт.
Ингредиентами будущего открытия стала нитроцеллюлоза, камфора и спирт. Смесь этих компонентов прогревалась до текучего состояния, а затем заливалась в форму и застывала при нормальной температуре. Так на свет появился паркезин — прародитель современных пластических масс. От природных и химически модифицированных природных материалов к полностью синтетическим молекулам развитие пластмасс пришло несколько позже — когда профессор Фрейбургского университета немец Герман Штаудингер открыл макромолекулу — тот «кирпичик», из которого строятся все синтетические (да и природные) органические материалы. Это открытие принесло в 1953 году 72-летнему профессору Нобелевскую премию. С тех-то пор все и началось… Чуть ли не ежегодно из химических лабораторий шли сообщения об очередном синтетическом материале с новыми, невиданными свойствами, и сегодня в мире ежегодно производятся миллионы тонн всевозможных пластических масс, без которых жизнь современного человека абсолютно немыслима.
Пластмассы используются везде, где только можно: в обеспечении комфортной жизнедеятельности людей, сельском хозяйстве, во всех областях промышленности.
По сравнению с металлами пластмассы — очень молодые материалы. Их история не насчитывает и 200 лет, в то время как олово, свинец и железо были знакомы человечеству еще в глубокой древности — за 3000-4000 лет до н. э. Но несмотря на это, полимерные материалы по ряду показателей значительно превосходят своего основного технологического конкурента.
10.2 Преимущества пластмасс
Преимущества пластмасс по сравнению с металлами очевидны.
Во-первых, пластик существенно легче.
Во-вторых, использование пластмасс дает почти неограниченные возможности для формообразования, позволяя воплощать в реальность любые дизайнерские идеи и получать детали самых сложных и хитроумных форм.
К преимуществам пластмасс также можно отнести их высокую коррозионную стойкость, устойчивость к атмосферным воздействиям, кислотам, щелочам и прочим агрессивным продуктам химии, отличные электро- и теплоизоляционные свойства, высокий коэффициент шумоподавления…
Их стойкость к ударным нагрузкам, способность деформированных участков к самовосстановлению, высочайшая антикоррозионная стойкость и малый удельный вес заставляют проникнуться к этому материалу глубоким уважением. Завершая разговор о достоинствах пластмасс нельзя не отметить тот факт, что хоть и с некоторыми оговорками, но все-таки большинство из них отлично поддается окрашиванию. Не имей серая полимерная масса такой возможности, вряд ли бы она снискала такую популярность.
В соответствии с отечественным государственным стандартом: пластмассами называются материалы, основной составной частью которых являются такие высокомолекулярные органические соединения, которые образуются в результате синтеза или же превращений природных продуктов. При переработке в определенных условиях они, как правило, проявляют пластичность и способность к формованию или деформации. Если из такого сложного даже для чтения, а не только для понимания, описания убрать первое слово «пластмассами», пожалуй, вряд ли кто догадается, о чем вообще идет речь. Что ж, попробуем немного разобраться.
«Пластмассы» или «пластические массы» назвали так потому, что эти материалы способны при нагреве размягчаться, становиться пластичными, и тогда под давлением им можно придать определенную форму, которая при дальнейшем охлаждении и отверждении сохраняется. Основу любой пластмассы составляет полимер (то самое «высокомолекулярное органическое соединение» из определения выше). Слово «полимер» происходит от греческих слов «поли» («много») и «мерос» («части» или «звенья»). Это вещество, молекулы которого состоят из большого числа одинаковых, соединенных между собой звеньев. Эти звенья называют мономерами («моно» — один).
Молекулярные цепи полимера состоят из практически бесчисленного числа таких кусочков, соединенных в единое целое (рис. 10.1).
Рисунок 10.1 – Цепочки молекул полипропилена
По происхождению все полимеры делят на синтетические и природные. Природные полимеры составляют основу всех животных и растительных организмов. К ним относят полисахариды (целлюлоза, крахмал), белки, нуклеиновые кислоты, натуральный каучук и другие вещества. Хотя модифицированные природные полимеры и находят промышленное применение, большинство пластмасс являются синтетическими.
Синтетические полимеры получают в процессе химического синтеза из соответствующих мономеров. В качестве исходного сырья обычно применяются нефть, природный газ или уголь. В результате химической реакции полимеризации (или поликонденсации) множество «маленьких» мономеров исходного вещества соединяются между собой, будто бусины на ниточке, в «огромные» молекулы полимера, который затем формуют, отливают, прессуют или прядут в готовое изделие.
Теперь вы, наверное, догадались, откуда берутся названия пластмасс. К названию мономера добавляется приставка «поли-» («много»): этилен → полиэтилен, пропилен → полипропилен, винилхлорид → поливинилхлорид и т.д. Международные краткие обозначения пластмасс являются аббревиатурами их химических наименований. Например, поливинилхлорид обозначают как PVC (Polyvinyl chloride), полиэтилен — PE (Polyethylene), полипропилен — PP (Polypropylene).
Кроме полимера (его еще называют связующим) в состав пластмасс могут входить различные наполнители, пластификаторы, стабилизаторы, красители и другие вещества, обеспечивающие пластмассе те или иные технологические и потребительские свойства, например, текучесть, пластичность, плотность, прочность, долговечность и т.д.
