- •Часть 1
- •26.02.06 «Эксплуатация судового электрооборудования и средств автоматики»
- •26.02.05 «Эксплуатация судовых энергетических установок»
- •Содержание
- •Введение
- •Цели, задачи дисциплины, место дисциплины в учебном процессе
- •Краткие исторические сведения о развитии материаловедения
- •1 Классификация и строение материалов
- •1.1 Классификация материалов
- •1.2 Металлы и неметаллы. Особенности атомно-кристаллического строения
- •1.3 Понятие об изотропии и анизотропии
- •1.4 Дефекты кристаллического строения
- •1.5 Методы исследования структуры металлов и сплавов
- •2 Формирование структуры литых материалов
- •2.1 Сущность процессов кристаллизации металлов и сплавов
- •2.2 Механизм и закономерности кристаллизации металлов
- •2.3 Условия получения мелкозернистой структуры
- •2.4 Особенности строения металлического слитка
- •2. Дилатометрический метод.
- •Магнитный анализ.
- •2.5 Понятие о ликвации
- •2.6 Аллотропические превращения железа при нагреве и охлаждении. Гистерезис
- •2.7 Магнитные превращения
- •2.8 Получение монокристаллов
- •2.9 Свойства аморфных металлов
- •3 Основные равновесные диагарммы состояния двойных сплавов. Связь между составом, строением и свойствами сплавов
- •3.1 Понятие о сплавах и методах их получения
- •3.2 Основные понятия в теории сплавов
- •3.3 Особенности строения, кристаллизации и свойств сплавов
- •3.4 Кристаллизация сплавов.
- •3.5 Диаграмма состояния
- •3.6 Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии
- •3.7 Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии
- •3.8 Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •3.9 Диаграмма состояния сплавов, компоненты которых образуют химические соединения.
- •3.10 Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии
- •3.11 Связь между свойствами сплавов и типом диаграммы состояния
- •4 Железоуглеродистые сплавы. Диаграмма состояния железо-углерод
- •4.1 Особенности диаграммы состояния железоуглеродистых сплавов.
- •4.2 Компоненты и фазы железоуглеродистых сплавов
- •4.3 Процессы при структурообразовании железоуглеродистых сплавов
- •4.4 Структуры железоуглеродистых сплавов
- •Термическая и химико-термическая обработка металлов и сплавов
- •5.1 Виды термической обработки
- •5.2 Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •1. Закалка в одном охладителе (v1)
- •2. Закалка в двух сферах или прерывистая (v2)
- •3. Ступенчатая закалка (v3)
- •4. Изотермическая закалка (v4)
- •5. Закалка с самоотпуском
- •6. Основное оборудование для термической обработки
- •5.3 Термическая обработка легированных сталей
- •5.4 Химико-термическая обработка стали
- •5.5 Назначение и технология видов химико-термической обработки
- •6 Классификация и маркировка сталей и чугунов. Их применение
- •6.1 Влияние углерода и примесей на свойства сталей
- •6.2 Классификация и маркировка сталей
- •6.3 Состав и сорта чугунов
- •7 Классификация и маркировка легированных сталей
- •7.1 Назначение легирующих элементов
- •7.2 Распределение легирующих элементов в стали
- •7.3 Принцип маркировки легированных сталей
- •7.4 Влияние элементов на полиморфизм железа
- •8 Цветные металлы и сплавы на их основе
- •8.1 Титан и его сплавы
- •8.2 Алюминий и его сплавы
- •8.3 Магний и его сплавы
- •8.4 Медь и ее сплавы
- •9 Композиционные материалы. Материалы порошковой металлургии
- •9.1 Композиционные материалы
- •9.2 Материалы порошковой металлургии
- •10 Пластические массы
- •10.1 Происхождение пластмасс
- •10.2 Преимущества пластмасс
- •10.3 Виды пластмасс
- •10.4 Определение типа пластика
- •11 Резиновые материалы
- •11.1 Состав и классификация резин
- •11.2 Получение изделий из резины
- •11.3 Классификация резиновых материалов по назначению и области применения
- •11.4 Факторы, влияющие на свойства резин в процессе эксплуатации
- •Контрольные вопросы
- •12 Стекло
- •12.1 Основные свойства стекла
- •12.2 Классификация стекол по назначению
- •12.3 Ситаллы
- •Контрольные вопросы
- •13 Керамические материалы
- •13.1 Общие сведения, классификация керамических материалов
- •Контрольные вопросы
- •Список рекомендуемой литературы
- •Оп.04 «материаловедение»
- •Часть 1
- •26.02.06 Эксплуатация судового электрооборудования и средств автоматики
- •26.02.05 Эксплуатация судовых энергетических установок
- •298309 Г. Керчь, Орджоникидзе, 123
Краткие исторические сведения о развитии материаловедения
Материаловедение - прикладная наука, изучающая взаимосвязи между составом, строением и свойствами металлов и сплавов в различных условиях. Изучение этой дисциплины позволяет осуществить рациональный выбор материалов для конкретного применения. Металловедение - постоянно развивающаяся наука, непрерывно обогащающаяся за счёт разработки новых сталей и сплавов, в свою очередь стимулирующих прогресс во всех областях науки и техники.
Как наука материаловедение насчитывает около 200 лет, несмотря на то, что человек начал использовать металлы и сплавы ещё за несколько тысячелетий до нашей эры. Только в 18 веке появились отдельные научные результаты, позволяющие говорить о начале осмысленного изучения всего того, что накопило человечество за всё время использования металлов.
Заметную роль в изучении природы металлов сыграли исследования французского учёного Реомюра (1683-1757). Ещё в 1722 году он провёл исследование строения зёрен в металлах. Англичанин Григнон ещё в 1775 году обратил внимание на то, что при затвердевании железа образуется столбчатая структура. Ему принадлежит известный рисунок дендрита, полученного при медленном затвердевании литого железа.
В России первым, кто начал научно осмысливать проблемы металлургии и литейного дела, был М.В. Ломоносов (1711-1765). Им написано учебное руководство «Первые основания металлургии рудных дел», в котором он, описывая металлургические процессы, постарался открыть их физико-химическую сущность.
Заметных успехов металловедение достигло лишь в 19 веке, что связано в первую очередь с использованием новых методов исследования структуры металла. В 1831 году П.П. Аносов (1799-1851) провёл исследование металла на полированных и протравленных шлифах, впервые применив микроскоп для исследования стали. Значительный вклад в развитие металловедения внесли работы русского учёного-металлурга П. П. Аносова (1799-1851), английских ученых Сорби и Роберта Аустена (1843-1902), немца А. Мартенса (1850-1914), Трооста и американца Э. Бейна (1891-1974), которые, каждый в своё время, рассматривая под микроскопом и фотографируя структуры, установили существование структурных превращений в сталях при их непрерывном охлаждении.
В 1873-1876 г.г Гиббс изложил основные законы фазового равновесия и, в частности, правило фаз, основываясь на законах термодинамики. Для решения практических задач знание фазового равновесия в той или иной системе необходимо, но не достаточно для определения состава и относительного количества фаз. Обязательно знать структуру сплавов, то есть атомное строение фаз, составляющих сплав, а также распределение, размер и форму кристаллов каждой фазы.
Создание научных основ металловедения по праву принадлежит Чернову Д.К. (1839 – 1903), который установил критические температуры фазовых превращений в сталях и их связь с количеством углерода в сталях. Этим были заложены основы для важнейшей в металловедении диаграммы состояния железоуглеродистых сплавов.
Открытием аллотропических превращений в стали, Чернов заложил фундамент термической обработки стали. Критические точки в стали, позволили рационально выбирать температуру ее закалки, отпуска и пластической деформации в производственных условиях.
В своих работах по кристаллизации стали, и строению слитка Чернов изложил основные положения теории литья, не утратившие своего научного и практического значения в настоящее время.
Разработка в 1902 году американскими учёными Ф. Тейлором и М. Уайтом быстрорежущей стали произвела переворот в машиностроении. Резко возросла производительность механической обработки, появились новые быстроходные станки и автоматы.
В 1906 году немецкий исследователь А. Вильм создал высокопрочный сплав алюминия с медью – дуралюмин, прочность которого в результате старения в несколько раз превышала прочность технического алюминия и других алюминиевых сплавов при сохранении достаточного запаса пластичности. Использование дуралюмина в самолётостроении на многие годы определило прогресс в этой области техники.
Немецким инженером заводов Круппа Мауэром и профессором Штраусом в 1912 году была получена хромоникелевая аустенитная нержавеющая сталь, а в 1912 году Бренли – ферритная нержавеющая сталь.
20 век ознаменовался крупными достижениями в теории и практике материаловедения: были созданы высокопрочные материалы для деталей и инструментов, разработаны композиционные материалы, открыты сверхпроводники, применяющиеся в энергетике и других отраслях техники, открыты и использованы свойства полупроводников. Одновременно совершенствовались способы упрочнения деталей термической и химикотермической обработкой. Огромное значение для развития отечественного материаловедения в наше время имели работы А.А. Бочарова, Г.В. Курдюмова, В. Д. Садовского и В. А. Каргина.
Определение атомного строения фаз стало возможным после открытия Лауэ (1912 г), показавшего, что атомы в кристалле регулярно заполняют пространство, образуя пространственную дифракционную решетку, и что рентгеновские лучи имеют волновую природу. Дифракция рентгеновских лучей на такой решетке дает возможность исследовать строение кристаллов.
В последнее время для структурного анализа, кроме рентгеновских лучей, используют электроны и нейтроны. Соответствующие методы исследования называются электронографией и нейтронографией. Электронная оптика позволила усовершенствовать микроскопию. В настоящее время на электронных микроскопах полезное максимальное увеличение доведено до 100 000 раз.
В пятидесятых годах, когда началось исследование природы свойств металлических материалов, было показано, что большинство наиболее важных свойств, в том числе сопротивление пластической деформации и разрушению в различных условиях нагружения, зависит от особенностей тонкого кристаллического строения. Этот вывод способствовал привлечению физических теорий о строении реальных металлов для объяснения многих непонятных явлений и для конструирования сплавов с заданными механическими свойствами. Благодаря теории дислокаций, удалось получить достоверные сведения об изменениях в металлах при их пластической деформации.
Современное развитие материаловедения как науки
Особенно интенсивно развивается металловедение в последние десятилетия. Это объясняется потребностью в новых материалах для исследования космоса, развития электроники, атомной энергетики.
Основными направлениями в развитии металловедения является разработка способов производства чистых и сверхчистых металлов, свойства которых сильно отличаются от свойств металлов технической чистоты, с которыми преимущественно работают. Генеральной задачей материаловедения является создание материалов с заранее рассчитанными свойствами применительно к заданным параметрам и условиям работы. Большое внимание уделяется изучению металлов в экстремальных условиях (низкие и высокие температуры и давление).
До настоящего времени основной материальной базой машиностроения служит черная металлургия, производящая стали и чугуны. Эти материалы имеют много положительных качеств и в первую очередь обеспечивают высокую конструкционную прочность деталей машин. Однако эти классические материалы имеют такие недостатки как большая плотность, низкая коррозионная стойкость. Потери от коррозии составляют 20% годового производства стали и чугуна. Поэтому, по данным научных исследований, через 20…40 лет все развитые страны перестроятся на массовое использование металлических сплавов на базе титана, магния, алюминия. Эти легкие и прочные сплавы позволяют в 2-3раза облегчить станки и машины, в 10 раз уменьшить расходы на ремонт.
По данным института имени Байкова А.Н. в нашей стране есть все условия чтобы в течении 10…15 лет машиностроение могло перейти на выпуск алюминиево-титановой подвижной техники, которая отличается легкостью, коррозионной стойкостью и большим безремонтным ресурсом.
Важное значение имеет устранение отставания нашей страны в области использования новых материалов взамен традиционных (металлических) – пластмасс, керамики, материалов порошковой металлургии, особенно композиционных материалов, что экономит дефицитные металлы, снижает затраты энергии на производство материалов, уменьшает массу изделий.
Расчетами установлено, что замена ряда металлических деталей легкового автомобиля на углепластики из эпоксидной смолы, армированной углеродными волокнами, позволит уменьшить массу машины на 40%; она станет более прочной; уменьшится расход топлива, резко возрастет стойкость против коррозии.
