ФИАН / Nefedyev_Ktp
.pdf
T S
|
n=0 exp |
−i Ztnn |
|
V (τ)dτ |
6= exp |
n=0 |
−i Ztn n |
V (τ)dτ ! . |
|
||||
|
N |
|
t +1 |
|
|
|
|
N |
t |
+1 |
|
||
|
Y |
|
|
|
|
|
|
T |
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S(t, t ) = T exp |
i |
t V (τ)dτ |
|
∞ |
(−i)n |
t T |
{ |
V (t )V (t ) . . . V (t ) dt dt |
. . . dt , |
||||
0 |
− |
Zt0 |
≡ n=0 n! |
Zt0 |
|
1 2 |
n } 1 2 |
n |
|||||
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
S(2)(t, t ) |
= |
|
(−i)2 |
|
t |
dt |
|
t |
dt T |
|
V (t )V (t ) |
|
|
|
|||||
|
Zt0 |
Zt0 |
{ |
} |
|
|
|||||||||||||
0 |
|
|
|
2! |
|
1 |
2 |
1 |
2 |
|
|
||||||||
|
|
|
|
1 |
|
|
t |
|
|
t1 |
|
|
|
|
1 |
t |
t |
|
|
|
= |
− |
|
Zt0 |
dt1 Zt0 |
dt2V (t1)V (t2) − |
Zt0 |
dt1 Zt1 |
dt2V (t2)V (t1) |
||||||||||
|
|
|
|
|
|||||||||||||||
|
2 |
|
2 |
||||||||||||||||
Z t Z t1
= − dt1 dt2V (t1)V (t2),
t0 t0
e2
4π
t1 → t2 t2 → t1
1
2
|
|
|
|
|
|
|
|
|
|
|
T |
|
|
|
|
|
|
|
|
|
|
|
−∞ +∞ |
t → ±∞ |
t = −∞ |
|
|
|
|
|
|
ψi |
|
t = +∞ |
|
ψf |
|
|
|
|
|
|
|
||||
f i = t + |
−∞ | |
|
−∞ i |
|
∞ |
−∞ | |
ii ≡ |
| |
ii |
|
|
| |
ψ( |
= S( |
, |
||||||||
ψ |
lim S(t, |
) |
) |
, |
) ψ |
|
S ψ |
|
|||
|
→ ∞ |
|
|
|
|
|
|
|
|
|
|
|
S(∞, −∞) = S |
|
|
S |
|
|
|
|
|
|
|
Sif
S
S
e |
S |
= 1371 1
|
|
|
f(α) = Z0 |
∞ |
e−y |
||
|
|
|
dy |
|
. |
||
|
|
|
1 + αy |
||||
|
|
α > 0 |
|
|
|
|
|
∞ |
dy |
e−y |
∞ |
|
Z0 |
∞ |
|
f(α) = Z0 |
1 + αy |
= n=0(−1)nαn |
yne−ydy = |
||||
|
|
|
X |
|
|
|
|
α =
∞
X
(−1)nαnn!,
n=0
S
0.02 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
0.925 |
|
|
|
|
|
|
0.01 |
|
|
|
|
0.920 |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
0.915 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
10 |
15 |
20 |
0.910 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
-0.01 |
|
|
|
|
0.905 |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
10 |
15 |
20 |
|||
α 1
f(α) = 1 − α + 2α2 − . . . .
|
|
|
|
|
|
n |
|
|
|
|
n |
|
n |
|
fn = (−1)nαnn! n≈1(−1)nαn√2πn |
|
||||
|
|
(−1)nen ln(αn). |
||||
|
e |
|||||
|
n n . 1/α |
|
n 1/α |
|||
n |
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
|
n |
|
Sn = Pm=0 fm |
||
|
n |
|
|
|||
|
n n |
|
|
|||
Sn |
α = 0.1 |
|
f(0.1) |
|||
n 1 |
|
|
|
|
|
|
S
|
|ii = |(k1σ1)(p1λ1)i |
k1,2 σ1,2 |
|fi = |(k2σ2)(p2λ2)i, |
|
|
p1,2 λ1,2 |
|
|
S |
|
Sif = hf|S|ii = hf|S(0) + S(1) + S(2) + . . . |ii, |
S |
e |
S(0) = 1 |
hf|S(0)|ii |
hf|S(0)|ii = (2π)3δ(3)(p1 − p2)(2π)3δ(3)(k1 − k2)δσ1σ2 δλ1λ2 ,
S(1)
hf|S(1)|ii = −iehe′γ′| Z |
d4xψγ¯ µψAµ|eγi hγ′|Aµ|γi hγ′|0i + hγ′|γγ′′i = 0, |
|||||
|
Aµ |
|
|
|
|
|
|
S |
|
|
|
|
|
|
|
|
iT (2) |
|
|
|
|
hf|S(2)|ii ≡ |
√ |
if |
(2π)4δ(4)(p1 |
+ k1 − p2 |
− k2), |
|
|
|||||
|
2ω12ω22E12E2 |
|||||
T |
(2) |
|
|
|
|
|
|
if |
|
|
|
|
|
i |
Tif(2) |
1 |
i |
Tif(2) |
2 |
Tif(2) = Tif(2) |
1 |
+ Tif(2) |
2 |
, |
= u¯2e2µ(−ieγµ)iS(p1 + k1)(−ieγν )e1ν u1,
= u¯2e2ν (−ieγµ)iS(p1 − k2)(−ieγν )e1µu1.
S(x − y) ≡ −ih0|T (ψ(x)ψ¯(y))|0i, S(z) = Z |
d4p |
|
|
S(p)e−ipz. |
|
(2π)4 |
||
Dµν (x − y) = ih0|T (Aµ(x)Aν (y))|0i, Dµν (z) = Z |
d4k |
|
|
Dµν (k)e−ikz. |
|
(2π)4 |
||
NT
|
O |
|
O |
|
±O(t2)O(t1), |
t1 |
< t2 |
T ( |
|
(t1) |
|
(t2)) = |
O(t1)O(t2), |
t1 |
> t2 |
N(a†a) = a†a, N(aa†) = ±a†a,
NT
AB ≡ T (AB) − N(AB).
h0|N(AB)|0i =
0
C
h0|T (AB)|0i = h0|T (AB)|0i − h0|N(AB)|0i = h0|AB|0i = AB,
Aµ(x) Aν (y) |
N T |
Aµ = aµ + b†µ
Aµ(x)Aν (y) = |
[aµ(x)b† (y)], |
x0 > y0 |
= −gµν Z |
d3k 1 |
| |
|
− |
|
| |
− |
, |
||||||
[aν (y)bµ† |
(x)], |
x0 < y0 |
(2π)3 2ω e− |
x0 |
y0 |
||||||||||||
|
|
|
ν |
|
|
|
|
|
|
|
iω |
|
|
+ik(x y) |
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
2ω
x
e−iω|t| = i Z |
dk0 |
1 |
e−ik0t = i Z |
dk0 1 |
||||
|
|
|
|
|
|
e−ik0t, |
||
2π |
k02 − ω2 + i0 |
2π |
k2 + i0 |
|||||
Dµν (x − y) = ih0|T (Aµ(x)Aν (y))|0i = iAµ(x)Aν (y) = i
gµν
Dµν (k) = k2 + i0 = gµν D(k). D(x)
D(x) = −δ(4)(x),
DR(x)
(x − y)2 < 0
y
[Aµ(x)Aν (y)]
k2 = k02 − ω2 = k02 − k2,
Z |
d4k |
(2π)4 e−ik(x−y)Dµν (k), |
D(x)
Dµν (k) → Dµν (k) + χµkν + χν kµ
χµ(k)
kµjµ = 0
χµ
χµ = 0
χµ |
|
|
χµ = f(k2)kµ/(2k2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
Dµν (k) = |
gµν + f(k2)kµkν |
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
k2 + i0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
Rξ |
f(k2) = −(1 − ξ)/k2 |
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
Dµν (k) = k2 + i0 gµν |
− (1 − ξ) |
|
k2 |
|
, |
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
kµkν |
|
|
|
|
|
|
|
|
|
|
|
||||
ξ |
|
|
|
|
|
|
ξ = 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
ξ = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kµDµν = Dµν kν = 0 |
|
|
Dµν (k) = k2 + i0 gµν − k2 |
|
. |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
1 |
|
|
|
|
kµkν |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
kA(k0, k) = 0. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
χµ = (χ0, −χ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
χ0 = − |
k0 |
, |
|
χ = |
|
|
k |
|
|
. |
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
2k2(k02 − k2) |
|
2k2(k02 − k2) |
|
|
|
|
|
|
|
|
|||||||||||||
|
−k2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
−k02 |
− k2 |
+ i0 |
|
|
− |
k2 |
|
||||||
D00(k0, k) = |
|
1 |
, Di0(k0 |
, k) = D0i(k0, k) = 0, Dij (k0, k) = |
|
|
1 |
|
|
|
|
δij |
|
kikj |
. |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D00(k0, k) |
|
|
|||||
k0 D00(t, x) δ(t) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dij(k0, k) |
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
k |
kiDij (k0, k) = kjDij(k0, k) = 0 |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rξ |
|
|
|
|
||
|
|
|
|
|
|
|
|
− |
1 |
(∂µAµ)2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
= Z d4x |
|
|
|
|
2ξ |
|
|
|
|
|
|
|
|
|
∂µ∂ν Aµ. |
|
||||||||||||
Sγ |
−4Fµν2 − 2ξ (∂µAµ)2 = |
2 Z |
d4xAν gµν − 1 − ξ |
|
|||||||||||||||||||||||||
|
|
|
|
1 |
|
1 |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
gµλ − |
1 − ξ |
∂µ∂λ Dλν (x) = −gµν δ(4)(x), |
|
|
1 |
|
|
Dµν (k) = Agµν + Bkµkν ,
AB
ξ → ∞ |
−21ξ (∂µAµ)2 |
gµν − ∂µ∂ν |
|
|
|
|
|
|
|
Z = Z |
d2xeiθ(r), |
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
Z |
|
Z = Z0 |
∞ rdr Z0 |
2π dϕ eiθ(r) = Z0 |
∞ rdr Z0 |
2π dϕ 2πδ(ϕ − ϕ0)eiθ(r) = 2π Z |
d2x δ(ϕ − ϕ0)eiθ(r), |
||||||||
ϕ0 |
|
|
|
|
|
|
|
|
|
|
[0, 2π] |
|
|
|
|
2π |
|
|
|
|
|
|
|
|
|
|
|
|
ϕ0 |
|
|
|
|
|
|
|
|
|
|
|
r |
|
|
|
|
|
|
|
|
|
ϕ0(r) = ϕ |
|
|||
|
|
|
|
|
|
|
|
δ(ϕ − ϕ0)eiθ(r) |
|
||||
|
|
|
|
|
|
|
− |
1 |
(∂µAµ)2 |
Aµ → Aµ +∂µω |
|||
|
|
|
|
|
|
|
2ξ |
|
|
||||
|
|
1 |
Z |
|
|
1 |
Z d4x ω η, η ≡ ∂µAµ. |
||||||
|
|
δ(ΔS) = − |
|
d4xδ(∂µAµ)2 = |
|
||||||||
|
|
2ξ |
ξ |
||||||||||
η |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
η = 0, |
|
|
||||
|
|
η |
|
|
|
|
|
|
|
|
|
|
|
η |
|
|
|
|
|
|
|
|
|
|
|
|
|
η |
|
|
|
|
|
|
|
|
|
|
|
η |
|
− − h | ¯ | i − ¯
Sαβ(x y) = i 0 T (ψα(x)ψβ (y)) 0 = iψα(x)ψβ (y),
|
|
|
|
|
|
|
|
¯ |
|
|
¯ |
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
ψ = a + b, ψ = a¯ + b, |
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
− |
i{bβ(y)¯bα(x)}, |
|
x0 |
< y0 |
|
|
||||||||||||
|
|
|
Sαβ(x |
|
y) = |
−i{aα(x)¯aβ (y)}, x0 |
> y0 = |
|
|
|||||||||||||||
|
|
= −i(iγµ∂µ + m)αβ Z |
d3p |
1 |
e−iEp|x0−y0|+ip(x−y), |
|
|
|||||||||||||||||
|
|
(2π)3 |
|
2Ep |
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p → −p |
|
|
|||||
1 |
e−iEp|x0 |
−y0| = i Z |
dp0 |
|
1 |
e−ip0(x0−y0) = i Z |
|
dp0 |
1 |
e−ip0 |
(x0 |
−y0), |
||||||||||||
2Ep |
2π |
|
p02 − Ep2 + i0 |
|
2π |
|
p2 − m2 + i0 |
|
||||||||||||||||
|
|
|
Sαβ(x − y) = Z |
|
d4p |
(ˆp + m)αβ |
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
e−ip(x−y), |
|
|
|||||||||||||||
|
|
|
|
(2π)4 |
p2 − m2 + i0 |
|
|
|||||||||||||||||
S(p) =
S(p) =
Λ±(p)
Λ±(p) =
pˆ + m |
1 |
|
|
|
= |
|
. |
p2 − m2 + i0 |
pˆ − m + i0 |
||
(ˆp − m)S(p) = 1.
|
Λ+(p)γ0 |
|
|
+ |
|
Λ−(p)γ0 |
, |
|
||
|
|
|
|
|
|
|
||||
|
p0 − Ep + i0 p0 + Ep − i0 |
|
|
|||||||
|
H |
|
|
|
|
± |
|
|
|
|
|
2Ep |
2 |
|
Ep |
|
|||||
Ep ± H |
= |
1 |
1 |
|
αp + βm |
|
||||
|
|
|
|
|
|
|
||||
Λ+uλ(p) = uλ(p), Λ−vλ(p) = vλ(p), Λ+vλ(p) = Λ−uλ(p) = 0.
Λ+ + Λ− = 1 Λ+ − Λ− = H /Ep
Λ+(p) = 2 1 + |
Ep |
|
|
= |
2Ep (γ0Ep − γp + m)γ0 = |
||||
|
1 |
|
|
αp + βm |
|
|
1 |
|
|
Λ−(p) = 2 1 − |
Ep |
|
|
= |
2Ep (γ0Ep + γp − m)γ0 = |
||||
1 |
|
|
αp + βm |
|
|
1 |
|
||
1 |
X |
|
|
|
|
|
|||
= |
|
|
|
vλ(p)v† |
(p). |
|
|
||
|
|
|
|
|
|||||
|
2Ep |
|
λ |
|
|
|
|
|
|
|
λ |
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
S
TN
T
T N
n = 2
1 |
|
X |
|
|
|
uλ(p)uλ† (p), |
|
2Ep |
|||
|
λ |
||
|
|
||
1 |
|
X |
|
|
|
uλc (−p)uλc†(−p) = |
|
2Ep |
|
||
|
|
λ |
TN
N
T (AB) = N(AB) + AB, |
|
||||
n |
|
|
|
|
|
|
|
|
|
|
|
n + 1 |
|
|
|
|
|
t1 > t2 > . . . > tn > tn+1 |
|
||||
T (A1 . . . AnAn+1) = T (A1 . . . An)An+1 = N(A1 . . . An)An+1 |
|
||||
+ |
AiAjN(A1 . . . An)ijAn+1 + . . . , |
||||
i6=j |
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
n |
i j N(A1 . . . An)ij |
|
|
|
Ai Aj |
|
N(A1 . . . Am)An+1 |
|
|
|
|
|
|
|
m |
|
||
|
Xi |
|
|||
N(A1 . . . Am)An+1 = N(A1 . . . AmAn+1) + |
|
|
|
AiAn+1N(A1 |
. . . Am)i. |
|
=1 |
|
|
||
|
|
p1 |
p2 |
p1 |
p2 |
|
p1 − k2 |
|
p1 + k1 |
|
|
k1 |
k2 |
k1 |
k2 |
|
+ a† |
|
|
|
An+1 |
|
|
|
|
|
|
|
|
an+1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n+1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
an+1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
|
|
|
|
N(A1 . . . Am)an+1 = N(A1 . . . Aman+1). |
|
|
|||||||||
|
|
|
an† |
+1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m |
|
|
|
|
|
|
N(A1 . . . Am)a† |
= a† |
|
|
|
|
Xi |
. . . [Aia† |
|
|||||
|
N(A1 . . . Am) + |
N(A1 |
] . . . Am)i = |
||||||||||
|
n+1 |
n+1 |
|
|
|
|
|
|
|
|
n+1 |
|
|
|
|
|
|
|
|
|
=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
m |
|
|
|
|
|
|
|
|
= N(A1 . . . Ama† |
Xi |
|
|
|
|||||||
|
|
) + |
AiAn+1N(A1 |
. . . Am)i, |
|||||||||
|
|
|
|
|
n+1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
=1 |
|
|
|
|
|
|
|
|
|
|
|
|
[Aia† |
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
n+1 |
|
|
|
|
|
|
|
|
|
|
|
an† |
+1 |
|
|
|
|
|
|
N |
|
N |
|
|
|
|
|
|
|
|
|
|
|
|
N
T T
N N
N
Ai
AiAn+1
N
N
T
S
iTif |
T |
Sif = δif + |
|
|
iTif |
|
|
(2π)4δ(4) (Pf |
|
|
|
|
|
||
q |
nN=1i (2En0) |
|
|
|||
|
mNf=1(2Em) |
|||||
|
|
Q |
Q |
|
|
|
n
S
−ieγµ
d4p/(2π)4
u¯cλ(p) = u¯−λ(−p)
ucλ(p) = u−λ(−p)
p2 = m2
Ni |
Nf |
X |
X |
− Pi) , Pi = pn, Pf = |
pm, |
n=1 |
m=1 |
T M F
iTif
n
u¯λ(p)
uλ(p)
iS(p)
p
p0 = ±Ep = ± p2 + m2
