ФИАН / Nefedyev_Ktp
.pdf
C
z = x − y
|
∞ |
|
|
|
|
|
Δ(z)|z0=0 Z−∞ dp0ε(p0)δ(p02 − Ep2) = 0, |
||||||
|
∂Δ(z) |
|
= δ(3)(z). |
|
||
|
|
|
|
|
||
|
∂z0 |
|z0=0 |
|
|||
|
|
|
|
|||
|
|
|
|
|
|
|
¯ |
|
|
|
|
(3) |
(x − y) |
{ψα(x)ψβ (y)}|x0=y0 = (γ0)αβ δ |
|
|||||
{ψα(x)ψβ† (y)}|x0=y0 |
= δαβ δ(3)(x − y). |
|||||
C
UC
UC apλU† |
= λcbpλ, UC bpλU† |
= λ apλ, |
||||
C |
|
|
|
C |
c |
|
a b |
|
|
|
|
|
|
|
|
|
|
|
ψ |
|
† |
= λcψ |
c |
¯T |
|
|
, |
UC ψUC |
|
= λcCψ |
= −λcγ2ψ |
|||
uλ(p)
ucλ(p)
C
UC2 = 1 = |λc|2 = 1.
λc = 1
Cψ(t, x) = −γ2ψ (t, x).
P
λc = ±1
λc = ±1 |
λc |
CAµ(t, x) = −Aµ(t, x).
P
|
P : t → t, |
x → −x, |
|
|
|
|
|
|
|
|
UP |
|
λ |
|
|
|
|
U a U† |
= λ a |
, |
U b U† |
= λ b |
. |
P pλ P |
p −pλ |
|
P pλ P |
p −pλ |
|
uλ(−p) = γ0uλ(p)
UP ψ(t, x)UP† = λpγ0ψ(t, −x).
UP2 = 1 λp = ±1 |
|
λp |
|||
|
|
|
λp |
||
|
|
|
|
2π |
|
θ |
n |
1 |
|||
2 |
|||||
|
|
||||
|
|
Rn(θ) = e |
i |
(σn)θ , |
|
|
|
2 |
|||
z |
|
|
|
2π |
|
|
Rz(0) = 1, Rz(2π) = |
eiπ |
0 |
|
|
|
0 |
e−iπ |
|||
|
|
λp |
|
|
|
|
|
C |
|
|
|
P |
|
|
|
|
|
ψ(t, x) → UC |
UP ψ(t, x)UP† UC† |
= UC [λpγ0ψ(t, −x)] UC† = −γ2 |
|||
h |
i |
= UP [ψc(t, x)] UP† |
c |
c |
(t, |
ψ(t, x) → UP hUC ψ(t, x)UC† i UP† |
= λpγ0ψ |
||||
= −1.
[λpγ0ψ(t, −x)] = λpγ0γ2ψ (t, −x), −x) = −λcpγ0γ2ψ (t, −x).
T
λp = −λcp.
λp
P
ˆ |
ˆ |
† |
UP (i∂ |
−eA |
−m)ψ(x)UP |
ψc = ψ |
λpc = λp |
λp = ±i.
P ψ(t, x) ≡ UP ψ(t, x)UP† = iγ0ψ(t, −x).
P A0(t, x) |
≡ UP A0(t, x)UP† = A0(t, −x), |
P A(t, x) |
≡ UP A(t, x)UP† = −A(t, −x). |
|
|
ˆ |
ˆ |
− m)ψ(x) = 0 |
|
|
|
|
(i∂ |
− eA |
|
||
|
|
UP |
|
U† |
|
|
|
|
|
|
P |
|
|
ˆ |
ˆ |
|
† |
† |
ˆ |
ˆ † |
= UP (i∂ |
−eA |
−m)UP UP ψ(x)UP |
= (i∂ |
−eUP AUP |
||
λp = −λp
−m)UP ψ(x)UP† = 0.
− − ˆ − − −
λpγ0 iγ0∂0 iγ∂ eA(t, x) m ψ(t, x) = 0.
x → −x
T
T : t → −t, x → x,
i∂t∂ |Φi = H|Φi
CP T
T
t
T
¯ |
|
. |
|Φi → |Φi = Ut|Φi |
||
t → −t Ut
H → UtHT Ut†,
H |
H → HT |
T
O
T T †
O → UtO Ut ,
T
T
|
|
|
|
|
|
|
|
|
|
|
T |
|
|
T ψ(t, |
x |
) ≡ Utψ |
T |
(t, |
x |
† |
¯T |
(−t, |
x |
|
(−t, |
x |
), |
|
|
|
)Ut |
= iγ3γ1γ0ψ |
|
) = iγ3γ1ψ |
|
T A0(t, x) ≡ UtAT0 (t, x)Ut† = A0(−t, x), T A(t, x) ≡ UtAT (t, x)Ut† = −A(−t, x),
CP T
CP T |
S = R d4xL |
|
CP T |
CP T
CP T : |
ψ(t, x) → iγ5ψ(−t, −x), |
CP T : |
Aµ(t, x) → −Aµ(−t, −x), |
CP T : |
ϕ(t, x) → ϕ(−t, −x). |
CP T
d(1/2,0) d(0,1/2)
ξ
ψ = η ,
CP T : ξ(t, x) → −iξ(−t, −x),
CP T : η(t, x) → iη(−t, −x).
±i |
4CP T |
±1 |
d x |
x → −x |
|
|
|
CP T |
|
|
CP T |
(−1)
ab
(ψaψb)CP T = ψbCP T ψaCP T = −ψaCP T ψbCP T .
CP T |
|
|
|
|
|
|
|
|
(LQED(x))CP T |
= −ψ¯CP T (t, x)(i∂ˆ − eAˆCP T (t, x) −1m)2ψCP T (t, x) − |
1 |
2 |
|||||
|
FµνCP T (t, x) |
|||||||
4 |
||||||||
¯ |
ˆ |
ˆ |
|
|
|
(−t, −x) = LQED(−x), |
||
= ψ(−t, −x)γ5 |
(i∂ + eA(−t, −x) − m)γ5 |
ψ(t, x) − |
4 |
Fµν |
||||
T
|
QED) |
Z |
QED(− ) x→−x Z |
QED( |
) = |
|
QED |
|
(S |
|
CP T = d4xL |
x = |
d4xL x |
|
S |
|
. |
CP T
CP T
CP T
CP T
CP T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f¯ |
|
|
L |
|
|
|
|
S |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(−1)L |
|
|
|
|
|
|
|
|
|
|
|
f |
¯ |
|
|
|
|
|
|
|
(−1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
f |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
P = (−1)L+1. |
|
|
|
|
|
|
|
|
|||
|
SM |
|
|
|
|
¯ |
|
C |
X |
SM |
|
|
¯ |
|
|
|
|
|
||||
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
ψ = |
C21 µ1 21 µ2 |f(p, µ1)f(−p, µ2)i → |
|
|
C21 µ1 21 µ2 |f(p, µ1)f(−p, µ2)i = |
||||||||||||||||||
|
µ1µ2 |
|
|
|
|
|
|
|
|
|
|
µ1µ2 |
|
|
X |
|
|
|
|
|
||
|
X |
|
|
SM |
|
|
|
|
|
¯ |
|
|
|
|
|
SM |
|
|
¯ |
|||
= − C |
21 µ1 21 µ2 |
|f(−p, µ2)f(p, µ1)i |
= −(−1) |
|
|
|
C |
21 µ2 21 µ1 |
|f(p, µ1)f(−p, µ2)i = |
|||||||||||||
|
µ1µ2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
µ1µ2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
1 |
X |
SM |
|
|
¯ |
|
|
|
|
|
|
|
|
|
= −(−1) |
L |
(−1) |
S− |
2 |
− 2 |
C |
p |
|
|
p |
, µ2)i |
= (−1) |
L+S |
ψ, |
||||||||
1 |
1 |
|
|
|||||||||||||||||||
|
|
|
|
|
2 |
µ1 2 µ2 |f( |
|
, µ1)f(− |
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
µ1µ2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p → −p |
|
|
|
(−1)S− |
1 |
1 |
|
(−1)L |
||||||
|
|
|
|
|
|
|
|
|
|
|
2 − 2 |
|
|
|
||||||||
J L |
S |
|
|
|
|
|
|
|
|
|
C = (−1)L+S . |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
2S+1LJ , |
|
|
|
|
|
|
|
|
|||
|
L |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S P D F |
|
|
|
|
|
|
|
|
L = 0, 1, 2, 3, . . . |
|
|
|
|
|
|
|
|
|
||||
L = S = J = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2S+1LJ = 1S0, JP C = 0−+, |
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
S = 1 |
L = 0 |
|
|
|
|
|
|
J = 1 |
||||
|
|
|
|
|
|
|
|
|
|
|
JP C = 1−−. |
|
|
|
|
|
|
|
|
|||
|
0++ |
L = S = |
1 J = 0 |
3P0 |
|
|
JP C |
|
0−− 0+− 1−+ 2+− |
J L S |
|
{J, L, S} |
JP C |
|
S = 1 |
J |
|
|
|
1−− |
3S1 |
3D1 |
|
•
•
ˆ
hΦ|O|Φi = 0
DS
JP
ψ |
c |
¯T |
|
= Cψ |
(iγµ∂µ − m)ψ = eAµγµψ, (iγµ∂µ − m)ψc = −eAµγµψc.
¯
Aµ = eN(ψγµψ).
ψ ψ† Aµ
O = 0
′ |
′ |
|
˙ |
′ |
′ |
=x0 |
= gµν δ |
(3) |
( |
x |
− |
x′ |
), |
|
[Aµ(x)Aν (x )]|x0=x0 |
= 0, [Aµ(x)Aν |
(x )]|x0 |
|
|
|
|||||||||
{ψα(x)ψβ (x′)}|x0′ =x0 |
= 0, {ψα(x)ψβ† (x′)}|x0′ =x0 |
= δαβδ(3)(x − x′), |
||||||||||||
′ |
|
˙ |
′ |
|
|
|
|
|
|
|
|
|
|
|
[ψα(x)Aµ(x )] = 0, [ψα(x)Aµ(x )] = 0. |
|
|
|
|
|
|
|
|
|
|
||||
L = − |
1 |
2 |
¯ ˆ |
ˆ |
|
4 |
Fµν |
+ ψ(i∂ |
− eA |
− m)ψ = Lγ + Le + LI , |
− ¯
LI = Aµ(x)jµ(x), jµ(x) = eN(ψ(x)γµψ(x)).
Z Z
H = H0 + V, V = − d3xLI = d3x jµ(x)Aµ(x),
H0
•
OS = |
, ψS (t) = e−iH tψ(0), |
e−iH t
i∂ψS (t) = HSψS (t). ∂t
•
|
|
|
|
|
ψH = |
= ψ(0), |
OH (t) = eiH tOS e−iH t, |
|
|
||||||
∂OH |
= |
∂ |
eiH t |
OS |
e−iH t = iH eiH t |
OS |
e−iH t |
− |
ieiH t |
OS |
e−iH tH = i[H |
OH |
]. |
||
∂t |
∂t |
||||||||||||||
|
|
|
|
|
|
|
|
||||||||
hOiS = hψS |OS |ψS i = hψH |eiH tOS e−iH t|ψH i = hψH |OH |ψH i = hOiH .
Z
∂µOH = i[PµOH ], Pµ = d3xTµ0.
∂ν Aµ = i[Pν Aµ], ∂ν ψ = i[Pν ψ],
T S
•
OI = eiH0tOS e−iH0t, ψI (t) = eiH0tψS (t),
hOiI = hOiS ,
∂tψI (t) = |
∂t |
eiH0tψS (t) = iH0eiH0tψS (t) + eiH0t |
∂tψS (t) |
= |
|
∂ |
∂ |
|
|
∂ |
|
=iH0eiH0tψS (t) − ieiH0t(H0 + VS )ψS (t) = −ieiH0tVSψS (t) =
=−ieiH0tVS e−iH0teiH0tψS (t) = −iVI ψI (t).
OH = eiH te−iH0tOI eiH0te−iH t ≡ S†(t, 0)OI S(t, 0),
S(t, 0) = eiH0te−iH t, S†(t, 0) = S−1(t, 0) = S(0, t),
I
|
T |
S |
|
i |
∂ψ |
= V ψ, V = |
Z d3xjµ(x)Aµ(x). |
|
|||
∂t |
|||
t
t0
ψ(t) = S(t, t0)ψ(t0).
S(t, t′)
• S(t, t) = 1
t0 = 0 |
t0 6= 0 |
t → t − t0
T S
•S(t, t′)S(t′, t0) = S(t, t0)
•S†(t, t′) = S(t′, t) = S−1(t, t′)
e−iEn(t−t′)
•
i∂t∂ S(t, t′) = V S(t, t′).
|
i |
∂ψ |
= i |
∂S |
ψ0 = V Sψ0 = V ψ, |
||
|
|
|
|||||
|
∂t |
∂t |
|||||
V |
C |
|
|
|
|
t t′ |
V (τ)dτ! . |
|
Snaive(t, t′) = exp |
−i |
|||||
|
|
|
|
|
|
Z |
|
V
[V (t)V (t′)] 6= 0.
|
i |
S(t0 + t0, t0) − S(t0, t0) |
= V (t0)S(t0, t0), |
|
|
|
||||||
|
|
|
t0 |
|
|
|
|
|
|
|
|
|
S(t0 + t0, t0) = S(t0, t0) − i |
t0V (t0)S(t0, t0) = 1 − i |
t0V (t0) ≈ exp −i Zt0t0+Δt0 |
V (τ)dτ . |
|||||||||
t0 + t0 = t1 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
S(t1, t0) = exp −i Zt0t1 |
V (τ)dτ . |
|
|
|
|
||||
S(t2, t0) = exp −i Zt1t2 |
V (τ)dτ S(t1, t0) = exp −i Zt1t2 |
V (τ)dτ exp −i Zt0t1 |
V (τ)dτ , |
|||||||||
t2 = t1 + t1 |
|
|
|
Ztn |
|
|
|
|
|
|
|
|
( 0) N→∞ n=0 exp − |
|
( ) |
n+1 = |
|
|
|
||||||
|
|
|
N |
tn+1 |
|
|
|
|
|
|
|
|
|
|
|
Y |
|
|
|
|
|
|
|
|
|
S t, t |
= |
i |
V τ dτ , t |
|
t. |
|
|
|||||
