ФИАН / Nefedyev_Ktp
.pdf
∂µL = ∂Aσ |
∂µAσ + ∂(∂ν Aσ) |
∂µ∂ν Aσ = ∂ν |
(∂µAσ)∂(∂ν Aσ) , |
|||||||||||
|
|
∂L |
|
|
∂L |
|
|
|
|
|
∂L |
|
|
|
|
|
|
|
|
|
|
∂ν gµν L |
|
|
|
||||
|
|
|
|
|
|
∂ν T µν = 0, |
|
|
|
|
|
|
||
|
|
|
T µν = −L gµν |
+ (∂µAσ) |
∂L |
|
|
|
||||||
|
|
|
|
|
|
|
|
|||||||
|
|
|
∂(∂ν Aσ) |
|
|
|
||||||||
|
|
|
|
P µ = Z d3xT µ0(x, t). |
|
|
|
|
|
|
||||
P µ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t1 |
t2 |
|
|
|
||
|
|
t2 |
dt |
∂T µ0 |
∂T µi |
= hP µ(t2) − P µ(t1)i |
t2 |
dt IΣ→∞ dπiT µi. |
||||||
0 = ZV d4x∂ν T µν = Z |
d3x Zt1 |
|
+ |
|
+ Zt1 |
|||||||||
∂t |
∂xi |
|||||||||||||
P µ = |
. |
T µν 6= T µν
T µν = −L gµν − F µσF νσ − ∂σ(AµF νσ) − Aµjν .
jν 6= 0
∂σ(AµF νσ)
∂σψµνσ |
ψµνσ = −ψµσν |
Z Z I
δP µ = d3x∂σψµ0σ = d3x∂iψµ0i = dπiψµ0i = 0,
Σ→∞
Σ
T µν = −L gµν − F µσF νσ = 14gµν FλρF λρ − F µσF νσ,
Tµµ = gµν T µν = 0.
Z
P µ = d3x −L gµ0 − F µν F 0ν .
M = [x × p]
Mij = εijkMk = xipj − xj pi
Z
Mµν = xµP ν − xν P µ = d3x(xµT ν0 − xν T µ0),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mµν |
|
|
|
|
|
∂λ(xµT νλ − xν T µλ) = T µν − T νµ = 0. |
|
|
|||||||||
|
|
|
|
t1 |
t2 |
|
|
|
|
|
|
Mµν (t2)−Mµν (t1) = 0 |
||||
|
|
|
P µ |
|
d3x 4Fµν F µν − F 0σF 0σ = Z |
d3x [−L + F0iF0i] = |
||||||||||
|
P |
0 ≡ W = Z |
||||||||||||||
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
= |
Z |
d3x 2(H2 − E2) + E2 |
= 2 Z |
d3x(E2 |
+ H2) = Z |
w(x)d3x, |
|||||||||
|
|
|
1 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
W |
|
|
|
|
|
|
w(x) |
|
|
|
|
||||
|
|
|
|
|
|
|
w(x) = |
|
1 |
(E2 |
+ H2). |
|
|
|
||
|
|
|
|
|
|
|
2 |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
Pi |
|
|
|
|
|
|
|
|
|
Pi = Z |
d3xT i0(x, t) = − Z |
d3xF ij F 0j = − Z |
|
d3xFij F0j = Z |
d3xεijkEjHk = Z |
d3x[EH]i, |
||||||||||
|
|
|
|
|
|
|
P = Z |
d3xS, |
|
|
|
|||||
S = [EH].
Tik = 12(E2 + H2)δik − EiEk − HiHk.
AµBµ ≡ AµBµ = A0B0 − AB.
∂µ ∂µ = (∂0, − )
∂j0
∂µjµ = ∂0j0 − (− )j = ∂t + j.
Fµν2 ≡ Fµν F µν .
V = LxLyLz
f(x + Lx, y, z, t) = f(x, y + Ly, z, t) = f(x, y, z + Lz, t) = f(x, y, z, t) ≡ f(x, t). f(x, t)
|
|
|
|
|
X |
|
|
|
|
|
|||||
|
f(x, t) = |
eikxf(k, t). |
|
|
|||||||||||
|
|
|
|
|
k |
|
|
|
|
|
|
|
|
|
|
|
eikx(x+Lx) = eikxx |
= kx = |
2π |
|
|
||||||||||
|
|
|
nx, |
|
|
||||||||||
|
Lx |
|
|
||||||||||||
nx |
|
|
|
|
|
|
|
|
|
|
|
|
ky |
kz |
|
k |
|
|
|
|
|
n |
|
|
|
= (2π)3 k, |
|||||
n = nx ny |
nz = |
2π kx 2π ky 2π kz |
|||||||||||||
|
|
|
Lx |
|
|
Ly |
|
Lz |
|
V |
|||||
|
|
|
|
k |
→ Z |
|
|
V d3k |
|
|
|
|
|
||
|
|
|
|
|
|
(2π)3 . |
|
|
|
|
|
||||
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
k |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k |
→ Z |
|
|
V d3k |
|
|
|
|
|
|||
|
|
|
|
(2π~)3 . |
|
|
|
|
|
||||||
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
k k′
x
Z |
|
|
|
Lx |
|
|
Ly |
dy Z0 |
Lz |
Lx |
|
d3xeikxe±ik′x = Z0 |
dxei(kx±kx′ )x Z0 |
dz = LyLz Z0 |
|||||||||
|
|
LxLyLz |
|
|
2πi(nx ± nx′ )x |
|
Lx |
|
|||
|
= |
|
exp |
0 |
= L L L δ |
||||||
|
2πi(nx |
|
nx′ |
) |
|
||||||
|
|
± |
|
Lx |
|
x y z nx |
|||||
|
|
|
|
|
f(x, t) = f (x, t) |
|
|
|
|||
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
X
f(x, t) = f(k, t)eikx + f (k, t)e−ikx
dx exp
2πi(n ± n′)x
Lx
, n′x = V δk, k′ .
,
k
|
|
f( k, t) = f (k, t) |
|
|
||
|
|
|
− |
|
|
|
|
Aµ(x, t) = |
aµ(k, t)eikx + c.c., |
|
|
||
|
|
k |
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
∂µAµ = 0 |
|
|
|
Aµ = 0, |
|
|
|
|
|
|
a¨µ(k, t) + |k|2aµ(k, t) = 0. |
|
|
|||
|
aµ(k, t) = e−iωtaµ(k), |
|
|
|||
|
aµ(k) ≡ aµ(k, 0), ω = |k|. |
k2 = k02 − k2 = |
||||
ω2 − k2 = 0 |
ω ≡ k0 |
k |
|
kµ = (k0, k) |
||
Aµ(x, t) = |
aµ(k)e−iωt+ikx + a |
(k)eiωt−ikx = |
aµ(k)e−ikx + a |
(k)eikx , |
||
|
µ |
|
|
µ |
|
|
|
k |
|
k |
|
||
|
X |
|
X |
|
||
aµ(k)
kµaµ = 0.
kµ
k2 = 0
Aµ → A′µ = Aµ + ∂µϕ = aµ → a′µ = aµ + kµϕ = kµa′µ = kµaµ = 0.
eµ(k, σ) σ = 0, 3
eµ(k, σ)eµ(k, σ′) = e0(k, σ)e0(k, σ′) − e(k, σ)e (k, σ′) = gσσ′ ,
3 |
|
|
3 |
|
|||
|
eµ(k, σ)eν (k, σ) = eµ(k, 0)eν(k, 0) − eµ(k, σ)eν (k, σ) = gµν . |
|
|||||
σ=0 |
|
|
|
σ=1 |
|
||
X |
|
|
|
X |
|
||
|
|
|
eµ(k, σ) = gµσ. |
|
|||
|
|
|
3 |
1 |
|
|
|
|
|
|
|
|
|
||
|
|
aµ(k) = |
|
√ |
|
eµ(k, σ)C(k, σ), |
|
|
|
|
σ=0 |
|
|
|
|
√ |
|
|
X |
|
|
|
|
1/ 2ω |
|
|
|
|
|
||
3 |
|
|
|
|
|
||
|
|
kµ |
eµ(k, σ)C(k, σ) = 0. |
|
|||
|
|
σ=0 |
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
z |
k |
kµ = (ω, 0, 0, ω)
3
X
0 = kµeµ(k, σ)C(k, σ) = kµC(k, µ) = ω(C(k, 0) − C(k, 3)),
σ=0
C(k, 0) = C(k, 3).
σ = 1, 2
Aµ(k) → Aµ(k) + χ(k)kµ,
χ(k) k2 = 0
A0(x, t) = 0, A(x, t) = 0
a0(k) = a3(k) = 0, a(k) = X √1 e(k, σ)C(k, σ),
σ=1,2 2ω
e(k, σ)e(k, σ′) = δσσ′ , ke(k, σ) = 0, σ, σ′ = 1, 2.
|
|
A(x, t) = X X √1 e(k, σ) C(k, σ)e−ikx + C (k, σ)eikx |
. |
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
k |
σ=1,2 |
|
2ω |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
˙ |
|
|
|
|
|
|
1 |
|
|
|
|
|||
|
|
Ei = −F0i |
= −Ai, |
|
Hi = |
− |
2 |
εijkFjk = εijk∂j Ak = [ A]i. |
|
|
|||||||
H = W = |
1 |
Z d3x(E2 + H2) = |
|
k |
|
|
|
1 |
|
|
|
|
|
||||
2 |
|
σ=1,2 2ω[C (k, σ)C(k, σ) + C(k, σ)C (k, σ)], |
|
|
|||||||||||||
|
|
|
|
X X |
|
|
|
|
|
|
|
|
|||||
|
|
|
CC C C |
|
|
|
|
|
|
CC C C |
|||||||
|
|
ωω′(e(k, σ)e(k′, σ′)) + [ke(k, σ)][k′e(k′, σ′)] |
|
|
|
||||||||||||
|
|
k′ = −k |
2ω2δσσ′ |
|
|
|
|
k′ = k |
|
|
|
||||||
P = Z d3x[EH] = k |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
||||
σ=1,2 2k[C (k, σ)C(k, σ) + C(k, σ)C (k, σ)], |
|
|
|||||||||||||||
|
|
|
X X |
|
|
|
|
|
|
|
|
|
|
|
|||
k |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H(k) = [nE(k)] = [E(k)H(k)] = nE2(k) − E(k)(nE(k)) = nE2(k), n = |
k |
, |
|||||||||||||||
|
|||||||||||||||||
|k| |
|||||||||||||||||
(nE(k)) =
0
Pµ = 12 X X kµ[C (k, σ)C(k, σ) + C(k, σ)C (k, σ)].
kσ=1,2
k
S = 1
SO(3)
3 × 3
(Sα)βγ = −iεαβγ , α, β, γ = 1, 2, 3,
εαβγ
|
|
|
|
|
|
|
|
|
µ = −1, 0, +1 |
|
||||||
|
|
|
|
|
|
|
|
χµ(α) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
S3χµ(α) = µχµ(α), S2χµ(α) = 2χµ(α), |
χ |
(α)χµ′ (α) = δµµ′ . |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
µ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
α=1 |
|
|
|
|
|
|
|
χ−1 |
= √ |
−i |
, |
χ0 |
= |
0 , |
χ+1 = |
|
|
√ |
|
i |
. |
|||
|
1 |
1 |
|
|
|
0 |
|
|
|
1 |
1 |
|
||||
|
|
|
|
|
|
|
− |
|
|
|
||||||
|
|
|
|
0 |
|
|
|
1 |
|
|
|
|
0 |
|||
|
|
2 |
|
|
|
2 |
|
|||||||||
(kL) = 0 L
|
|
|
|
|
|
|
|
µ = 0 |
χµ |
|
|
|
|
|
|
|
|
f0 = fz, f±1 |
1 |
|
|
|
||||
= |
√ |
|
|
(fx |
ify), |
|||
2 |
||||||||
fµ = (−1)µf−µ, |
|
|||||||
|
1 |
|
|
|
|
|||
f0 = fz, f±1 = |
√ |
|
|
(fx |
± ify). |
|||
2 |
|
|||||||
X |
|
{χ} |
||||||
|
|
|||||||
f = |
|
|
fµχµ, |
|||||
µ=−1,0,+1 |
|
|
||||||
|
X |
|
|
|||||
fg = |
|
|
|
fµgµ. |
||||
µ=−1,0,+1 |
|
|
||||||
|
k |
|
|
|||||
l |
|
|
|
|
|
|
|
|
Ylm |
|
|
|
|
|
|
µ |
|
YjlM(µ) (n) = ClmjM1αYlm(n)χµ(α), |
m + α = M, |
|||||||
X
mα
SU(2)
SU(N)
ClmjM1α
λ |
YjlM (n) |
Z
YjlM (n)Yj′l′M′ (n)dΩ = δjj′ δll′ δMM′ ,
YjlM (n) = (−1)j+l+M+1Yjl,−M (n).
|
|
|
|
|
|
|
λ = −1 |
||||
YjM(−1)(n) = nYjM (n) = s |
|
|
Yj,j−1,M (n) − s |
|
|
|
Yj,j+1,M (n), |
||||
|
2j + 1 |
|
2j + 1 |
||||||||
|
|
|
j |
|
|
|
|
|
j + 1 |
||
λ = 0, 1 |
|
|
|
|
|
|
|
|
|
|
|
Y (0) |
= YjjM (n), |
Y |
(1) |
= i[YjjM (n), n]. |
|||||||
jM |
|
|
|
|
|
jM |
|
|
|
|
|
l = j ± 1
k1 = k/2 k2 = −k/2
Φα1α2 (k) α1 α2
Φα1α2 (k) = Φα2α1 (−k).
nα1 Φα1α2 (k) = nα2 Φα1α2 (k) = 0.
Ylm(n) |
χsµ(α1, α2) |
|
|
|
X |
|
χsµ(α1, α2) = |
C1sµµ11µ2 χµ1 (α1)χµ2 (α2), |
µ1µ2
χµ(α)
S = 0, 1, 2
S = 1
µ1 + µ2 = µ.
χ(sµ)(α1, α2)
S1 = 1 S2 = 1
S = 0 S = 2
(−1)l
χsµ(α2, α1) = (−1)lχsµ(α1, α2),
j = 1
Φα1α2 (k) = εα1α2α3 Fα3 (k),
F (k)
F (k)
F (k) = Y1(M−1)(n) = nY1M (n).
F (−k) = F (k)
Φα2α1 (−k) = εα2α1α3 Fα3 (−k) = −εα1α2α3 Fα3 (k) = −Φα1α2 (k),
|
S = 0 |
S = 2 |
S = 0 |
l = 1 |
|
j = 1 |
|
|
|
l = S = 2 |
|
Φα1α2 (k) |
Φα1α2 (k)nα2 |
|
j M
Y1(M−1)(n)
Φα1α2 (k)nα2 |
= Y |
(−1) |
(n) |
= nα1 Y1M (n). |
|
|
1M |
|
α1 |
|
|
|
|
Φα1α2 (−k)(−nα2 ) = −nα1 Y1M (−n) = nα1 Y1M (n) = Φα1α2 (k)nα2
Φα1α2 (−k) = −Φα1α2 (k)
Φα2α1 (−k) = Φα1α2 (−k) = −Φα1α2 (k),
j = 1
j = 1
t2 |
|
|
mx2 |
|
1 |
|
S = Zt1 |
L(x, x˙)dt, |
L(x, x˙) = T − V = |
˙ |
− |
|
mω2x2. |
2 |
2 |
∂L∂x − dtd ∂L∂x˙ = 0
x¨ + ω2x = 0.
H = px˙ − L, p = |
∂L |
= mx,˙ |
|
||
∂x˙ |
H = p2 + 1mω2x2.
2m 2
AB
{AB} = |
∂A ∂B |
− |
∂A ∂B |
, |
||||
|
|
|
|
|
|
|||
∂p ∂x |
∂x ∂p |
|||||||
{xx} = {pp} = 0, {px} = 1.
p˙ = {Hp} = ∂H∂p ∂x∂p − ∂H∂x ∂p∂p = −∂H∂x ,
x˙ = {Hx} = ∂H∂p ∂x∂x − ∂H∂x ∂x∂p = ∂H∂p .
f(t, p, x)
dfdt = ∂f∂t + ∂f∂p p˙ + ∂f∂x x˙ = ∂f∂t + {Hf},
→ → → ˆ p p,ˆ x x,ˆ H H
