ФИАН / Nefedyev_Ktp
.pdf
|
H |
|
wh |
h H |
|
|
|
|
wh |
W |
W |
H |
h2 · h1 H |
wh |
h |
wh2 · wh1 W |
|
|
H |
W |
W |
|
H |
wh(λa) = λwh(a), wh(a1 + a2) = wh(a1) + wh(a2),
a |
λ |
|
|
|
|
|
|
|
|
|
W |
|
H |
|
|
n × n |
wh W |
W |
|
|
|
||
|
|
|
h |
|
S |
w′ |
= SwhS−1 = |
· |
· · |
· · · |
, |
h |
|
0 |
(m × m) |
|
|
(m×m) |
|
|
|
|
a |
|
|
|
|
|
|
a′ = Sa |
|
|
|
|
a′ |
H |
|
|
|
|
|
H |
|
|
|
|
|
H
{h1, h2, . . . hk} H
wh W
HW
O(n)
U(n)
SO(3) |
|
|
|
|
[JiJj ] = iεijkJk, |
i, j, k = 1, 2, 3, |
|
||
|
SO(3) |
|
J |
|
2J + 1 |
|
−2 |
J |
|
z J |
z = −2 − 2 2 |
J |
||
|
J, J +1 . . . J |
1, J |
||
|
J |
= Jx +Jy +Jz |
|
|
Ji
J(J + 1)
SO(3)
J = 1/2
n
d(1/2)(θ) = e2i (σn)θ ,
σ |
|
|
|
i |
|
|
0 −1 |
|
|
1 |
0 |
0 |
|||||
σ1 = |
0 |
1 |
, σ2 = |
0 |
−i |
, σ3 = |
1 0 |
, |
θ |
|
|
|
|
|
|
|
|
|
|
|
d(1/2)(0) = 1, d(1/2)(2π) = −1, |
|
|
|||
|
|
|
2π |
|
|
|
|
|
|
|
|
|
|
|
|
SO(3) |
|
|
|
|
|
J1 |
J2 |
J1 6= J2 |
|
|
(2J1 + 1)(2J2 + 1) |
|
|
|
|
||||
(J2, J1) (J1, J2)
d(J1,J2)
M2 N2
d(J1,J2) d(J1,J2) d(J2,J1)
(1 + iMdη + iNdη ) = 1 + i(−N )dη + i(−M )dη ,
M′ = −N N′ = −M M′2 = N 2 = J2(J2 + 1) N′2 = M 2 = J1(J1 + 1)
(J2, J1)
• d(0,0)
• d(1/2,0) d(0,1/2)
1
2
• d(1/2,1/2)
P : x → −x, |
P = −1, |
P JP −1 = J, P KP −1 = −K.
P MP −1 = N, |
P NP −1 = M, |
P M2P −1 = N2, |
P N2P −1 = M2. |
J1 6= J2
d(J1,J2) |
d(J2,J1) |
|
|
d(J1,J2) |
0 |
. |
|
D(J1,J2) = |
0 |
d(J2,J1) |
|
P
d(J1,J2) J1 = J2
D(J1,J2)
|
|
P = λp I |
0 |
|
, |
|
|
|
|
|
|
0 |
I |
|
|
|
|
|λp| = 1 I |
|
|
|
(2J1 +1)(2J2 +1) |
|
|
||
D(1/2,0) = |
d(1/2,0) |
0 |
, P = λpγ0, γ0 = |
0 1 |
. |
|||
0 |
d(0,1/2) |
1 0 |
||||||
|
ξ |
η |
|
|
|
|
|
|
d(1/2,0) d(0,1/2) |
|
|
|
|
|
|
|
D(1/2,0) |
|
|
|
η . |
|
|
|
ξ η |
|
|
|
ψ = |
|
|
|
|
||
|
|
|
ξ |
|
|
|
|
|
|
|
P |
|
|
|
|
|
|
|
|
P |
= λpγ0ψ, |
|
|
|
||
|
|
ψ → ψ′ |
|
|
|
|||
ξ → λpη, η → λpξ.
•
•
d(J2,J1) d(J1,J2) d(0,1/2) d(1/2,0)
ξ Λ ξ′ = aξ,
→
SL(2, C)
ξ η
σ2
η
2π
ξ1
ξ = ξ2 , ξ′ =
a
d(0,1/2) d(1/2,0)
S
λp = i,
|
|
J1 6= J2 |
|
|
|
|
|
|
Λ |
|
ξ1′ |
, a = |
|
α β |
ξ2′ |
γ δ |
|||
|
2 × 2 |
|
|
|
Sa S−1 = b.
a = b = e2i (σn)ω .
S
Sσ S−1 = −σ.
S
S = iσ2,
b = Sa S−1 = σ2a σ2.
P 2 = −1
ξ |
2 × 2 |
a |
,a = αδ − βγ = 1.
d(1/2,0)
η |
b |
S
ω 1
b = (a†)−1
a
η′ = (σ2a σ2)η = (−iσ2η′) = a (−iσ2η),
η2˙ ! |
|
− 2 η2 η1 |
|
|||
˙ |
|
|
|
|
−η2 |
|
η1 |
= |
iσ |
η1 |
= |
|
|
|
˙ |
|
|
|
˙ |
|
η1 = η2 = η1˙ , η2 |
= −η1 = η2˙ , |
|||||
wα = εαβwβ, α, β = 1, 2, ε12 = −ε21 = 1. |
||||||
|
|
ηα˙ = ηα, |
|
|
||
ψ |
|
|
ξα |
|
|
|
|
|
ψ = |
, |
|
|
|
|
|
ηα˙ |
|
|
||
ξα |
P |
|
|
P |
|
|
→ |
λpηα˙ , ηα˙ → λpξα, |
|
||||
λp
c |
|
|
|
|
|
|
|
|
|
H = 0, |
E + |
∂H |
= 0 |
||||
|
∂t |
|||||||
|
|
|
|
|
|
|
||
|
E = ρ, |
H − |
∂E |
= j, |
||||
|
|
|
||||||
|
∂t |
|||||||
ρ j |
|
|
|
|
|
|
|
|
ρ(x, t) = Xi |
eiδ(3)(x − xi(t)), |
j(x, t) = Xi |
eiviδ(3)(x − xi(t)), |
|||||
|
|
∂ρ |
j = 0 |
|
|
|
|
|
|
|
|
+ |
|
|
|
|
|
|
|
∂t |
|
|
|
|
||
|
∂µjµ = 0, |
jµ = (ρ, j). |
|
|
||||
|
|
|
|
Aµ = (A0, A) |
E |
= − |
∂A |
− A0 |
= −∂0A − ∂A0, |
|
||||
∂t |
||||
H |
= |
A = [ A]. |
|
|
Fµν = ∂µAν − ∂ν Aµ,
F0i = ∂0(−Ai) − ∂iA0 = Ei, |
Fij = ∂i(−Aj ) − ∂j (−Ai) = −εijkεklm∂lAm = −εijkHk, |
|||||||||||||||||||
Fµν = −E1 |
0 |
|
−H3 |
H2 |
, F µν = |
E1 |
0 |
|
−H3 |
H2 |
|
|||||||||
|
0 |
|
E1 |
|
E2 |
E3 |
|
|
|
|
|
0 |
−E1 |
−E2 |
−E3 |
|
||||
|
−E2 |
H |
2 |
H |
1 |
−0 1 |
|
|
E H |
2 |
|
H |
1 |
−0 |
||||||
|
|
3 |
|
|
H |
|
|
|
3 |
H3 |
|
|
H1 |
|
||||||
|
E H3 |
|
0 |
|
|
|
E2 |
|
0 |
|
||||||||||
− |
|
− |
|
|
|
|
|
|
− |
|
|
|
|
|
||||||
Ei = F0i = −Fi0 = −F 0i = F i0, |
|
1 |
|
|
|
|
1 |
εijkF jk. |
|
|||||||||||
Hi = − |
|
εijkFjk = − |
|
|
||||||||||||||||
2 |
2 |
|
||||||||||||||||||
∂µFλρ + ∂λFρµ + ∂ρFµλ = 0. |
|
||||||||||
λ = i ρ = j |
|
|
|
|
|
|
|
|
µ 6= λ 6= ρ |
µ = 0 |
|
|
|
|
|
|
|
|
|
|
|
||
εijk |
∂Hk |
|
+ (∂iEj − ∂j Ei) = 0, |
|
|||||||
∂t |
|
|
|||||||||
εijk |
|
H |
|
|
|
E k |
|
|
|||
∂ |
|
+ |
= 0, |
|
|||||||
∂t |
|
||||||||||
µ = i λ = j ρ = k |
|
|
|
|
|
|
|
|
εijk |
|
|
εµνλρ |
|
|
|
1 |
|
|
|
|
|
||
|
˜ |
|
|
|
εµνλρF |
λρ |
. |
|
|||
|
Fµν = |
|
2 |
|
|
||||||
|
|
|
|
|
˜µν |
= 0. |
|
|
|
||
|
|
|
∂µF |
|
|
|
|||||
∂µF µν = jν ,
jµ
ϕ |
Aµ → Aµ′ = Aµ + ∂µϕ |
Fµν |
↔ ˜
F F
2J + 1 J = 1
Aµ
Aµ
∂µAµ = 0.
ϕ = 0.
∂µA′µ = ∂µ(Aµ + ∂µϕ) = ∂µAµ + ϕ = ∂µAµ = 0.
Aµ = jµ,
∂µjµ = 0
A(0)µ = 0
A(0)µ
jµ
− D(x) = δ(4)(x),
Z
A(1)µ (x) = − d4yD(x − y)jµ(y).
Z
A(1)µ (x) = − d4y D(x − y) jµ(y) = jµ(x).
D(k) = Z |
d4x |
− kx, |
(2π)4 eikxD(x), kx = kµxµ = k0x0 |
1
D(k) = k2 .
k0
k0 = ±|k|
1
DR(k) = (k0 + i0)2 − k2 ,
R
δ(x)
DR(x)
x0 + |x|
x0
Z
Aµ(x) = A(0)µ −
1
DR(x) = −4π|x|δ(x0 − |x|)Θ(x0 Θ(x0)
|x| = x0
DR(x) = −21π δ(x2)Θ(x0).
d4yDR(x − y)jµ(y) = A(0)µ (x) + 41π Z
A(0)µ
),
2|x|
δ
x2
d3y jµ(x0 − |x − y|, y),
|x − y|
j0(x) = ρ(x) = Xi |
eiδ(3)(x − xi), |
|
j(x) = 0 |
|
|
|||||||||||||
|
1 |
|
|
e δ(3)(y |
x |
) |
|
1 |
|
|
|
|
e |
|
|
|||
A0(x) = |
|
Z |
d3y |
Pi i x |
|
y− |
i |
|
= |
|
|
|
|
i |
|
. |
||
4π |
− |
|
4π i |
x |
xi |
| |
||||||||||||
|
|
|
| |
|
| |
|
|
|
|
|
X | |
|
− |
|
||||
1/(4π)
Z
S = d4xL ,
L
L |
xµ |
L |
Aµ ∂ν Aµ |
L
L |
m4 |
L = Lγ + L ′, |
Lγ = − |
1 |
Fµν F µν = |
1 |
(E2 − H2), L ′ = −jµAµ. |
|
|
|
|||||
4 |
2 |
|||||
|
|
Lγ |
|
|
L ′ |
|
|
∂µf |
|
|
|
|
|
|
S′ = − Z d4xjµAµ → S′ + δS′, |
|
||||
δS′ = − Z d4xjµ∂µf = − IΣ→∞ dΣµjµf + Z |
d4xf∂µjµ = 0, |
|||||
|
|
∂L |
= ∂ν |
|
∂L |
, |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
∂Aµ |
∂(∂ν Aµ) |
|
|
|
|
|||||||
δS = δ Z d4xL (Aµ, ∂ν Aµ) = Z d4x |
∂Aµ δAµ + |
∂(∂ν Aµ)δ(∂ν Aµ) |
= |
|||||||||||
|
|
|
|
|
|
|
|
∂L |
|
|
|
∂L |
|
|
= Z d4x |
∂Aµ |
− ∂ν ∂(∂ν Aµ) |
δAµ = 0, |
|
||||||||||
|
|
|
∂L |
|
|
|
∂L |
|
|
|
|
|
||
δAµ
