ФИАН / Nefedyev_Ktp
.pdf
|
∞ dp |
|
|
|
|
|
|
|
I(a) = Z−∞ |
|
(f(p + a) − f(p)), |
|
|
||
|
2π |
|
|
||||
a |
|
|
|
|
|
|
|
p+a = p′ |
|
|
|
|
|
|
|
|
I(a) |
|
|
|
|
|
|
|
|
|
|
|
|
I(a) 6= 0 |
R dpf(p) |
|
f(p + a) |
a |
|
||||
|
|
|
1 |
a2(f′(∞) − f′(−∞)) + . . . |
|
||
|
I(a) = a(f(∞) − f(−∞)) + |
|
|
||||
R |
2 |
|
|||||
1/p |
f(n)(±∞) = 0 |
I(a) = 0 |
|||||
dpf(p) |
|
|
|
f(p) |
|
||
R dpf(p) |
|
|
|
|
f(p) |
|
p → ±∞ |
|
I(a) = a(f(∞) − f(−∞)), |
|
|
||||
|
|
|
|
|
f(n)(±∞) = 0 |
|
|
|
|
|
|
d4p |
|
|
|
|
|
|
d4p |
aµ |
∂ |
|||
I(a) = |
Z |
|
|
|
(f(p + a) − f(p)) = |
Z |
|
|
f(p) + . . . = |
|||||||
|
(2π)4 |
(2π)4 |
∂pµ |
|||||||||||||
|
|
|
aµ |
|
|
f(Λ)dΣ |
= |
iaµ |
|
lim Λ |
Λ2f(Λ). |
|||||
= |
|
(2π)4 ZΛ→∞ |
|
|
||||||||||||
|
µ |
|
8π2 |
Λ→∞ µ |
|
|
|
|
||||||||
|
|
µ |
|
µ |
p |
|
k1 |
p |
k1 |
λ |
p − k1 |
λ |
|
p − k2 |
q |
|
|
q |
|
p − q |
|
k2 |
p − q |
k2 |
|
ν |
ν |
¯ |
¯ |
¯ |
ψ(x), |
jµ(x) = eψ(x)γµψ(x), j5µ(x) = ψ(x)γµγ5 |
ψ(x), P (x) = ψ(x)γ5 |
||
¯
ψ ψ
∂µjµ(x) = 0, ∂µj5µ(x) = 2imP (x).
Z
Tµνλ(k1, k2, q) = i d4x1d4x2h0|T (jµ(x1)jν (x2)j5λ(0))|0ieik1x1+ik2x2 ,
Z
Tµν (k1, k2, q) = i d4x1d4x2h0|T (jµ(x1)jν (x2)P (0))|0ieik1x1+ik2x2 ,
q = k1 + k2
γλγ5
γ5
p → p + a
|
|
|
|
|
µνλ = Tµνλ(a) − Tµνλ(0), |
|
|
|
|
|
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a = αk1 + (α − β)k2, |
|
|
|
|
|
α β |
|
|
|
|
a = 0 |
|
|
|
|
|
|
|
|
|
|
µνλ |
|
|
|
|
|
µνλ = |
− |
e2 |
Z |
d4p |
Sp [S(p + a)γλγ5S(p + a − q)γνS(p + a − k1)γµ] |
|||||
(2π)4 |
||||||||||
|
|
|
|
|
|
|
k1 |
↔ |
k |
. |
|
− Sp [S(p)γλγ5S(p − q)γν S(p − k1)γµ] + |
µ |
ν2 |
|||||||
|
|
|
|
|
|
|
|
↔ |
|
|
µνλ |
|
|
|
|
|
e2 |
|
|
|
|
|
|
|
|
|
|
|
µνλ(1) (k1, k2) = |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
(αk1 + (α − β)k2)αεαµνλ, |
|||||||||
|
|
|
|
8π2 |
||||||||||
γ5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k1 ↔ k2 µ ↔ ν |
|
|
|
|
|
Tµνλ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
e2 |
|
|
|
|
|
|
|
|
|
Tµνλ(β) = Tµνλ(0) − β |
|
(k1 − k2)αεαµνλ. |
|
||||||||
|
|
|
8π2 |
|
||||||||||
|
|
k1µTµνλ(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
k1µ |
|
|
|
|
|
|
|
|
|
|
|
|
|
ˆ |
= S |
−1 |
(p − k2) − S |
−1 |
|
|
|
ˆ |
= S |
−1 |
(p) − S |
−1 |
(p − k1), |
|
k1 |
|
|
(p − q), k1 |
|
|
|||||||||
e2
k1µTµνλ(0) = 8π2 ενλαβ k1αk2β,
e2(1 + β)
k1µTµνλ(β) = 8π2 ενλαβk1αk2β.
qγˆ 5 = γ5S−1(p − q) + S−1(p)γ5 + 2mγ5,
|
|
qλTµνλ(β) |
|
|
|
|
|
|
||
q T (β) = 2mT |
µν − |
e2 |
(1 − β) |
ε |
|
k |
|
k |
|
, |
|
|
|
|
|||||||
λ µνλ |
|
4π2 |
|
νλαβ |
|
1α |
|
2β |
|
|
Tµν
Tµνλ
k1µTµνλ = 0, qλTµνλ = 2mTµν ,
β = −1
k1µTµνλ |
|
|
|
qλTµνλ |
|
||
ενλαβk1αk2β |
|
|
e2 |
|
|
|
|
qλTµνλ = 2mTµν − |
|
εµναβk1αk2β, |
|
|
|
||
2π2 |
|
|
|
||||
|
|
|
|
|
˜ |
|
|
|
|
|
|
F F |
|
||
∂µj5µ = 2imP + |
e2 |
|
|
e2 |
˜ |
||
(4π)2 |
εµναβ Fµν Fαβ = 2imP + |
8π2 |
Fµν Fµν , |
||||
Tµνλ
γ5
D |
|
|
|
u ↔ d |
|
u d |
||
|
|
|
|
SU(2) |
||||
ˆa |
|
1 |
a |
|
|
|
|
|
= |
a = 1, 3 |
|
|
|||||
SU(2) T |
2 τ |
|
|
|
||||
|
|
τa |
|
|
|
|
u(x) |
, |
j5aµ(x) = q¯(x)γµγ5 |
|
q(x), q(x) = |
d(x) |
|||||
2 |
||||||||
ud
jµ(x) = eq¯(x)γµQqˆ (x), Qˆ = Tˆ3 |
+ 2Yq = |
|
|
0 −1/3 |
, |
||||||||||||
|
|
|
|
|
1 |
|
|
|
2/3 |
|
|
0 |
|
|
|
||
Yq = 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NC = 3 |
|
|
|
|
|
|
|
|
|
|
D |
|
|
|
|
|
|
D = NC Sp QQˆ ˆ |
τ3 |
= |
3 |
Sp(Qˆ2τ3) = |
3 |
|
4 |
− |
1 |
|
= |
1 |
. |
|
|||
2 |
2 |
2 |
9 |
9 |
2 |
|
|||||||||||
πa(x)
h0|j5aµ(x)|πb(p)i = −ifπpµδabe−ipx, fπ
|
|
|
|
|
|
|
|
|
h0|∂µj5aµ|πb(p)i = fπmπ2 δab. |
|
|
|
|
|
a = 3 |
|
π0 |
||||
π |
± |
= (π |
1 |
2 |
)/ |
√ |
|
|
|
|
|
|
|
||||||||
|
|
± iπ |
2 |
|
|
|
||||
•
|
p1 → p−, p2 → −p+, P1 → −P−, P2 → P+, |
p− p+ |
P+ P− |
s = (p− − P−)2, t = (p− + p+)2, u = (p− − P+)2.
|Tfi|2
e+e− →
ϕ+ϕ−
σ(e+e− → ϕ+ϕ−) = πα2 v3,
3ε2
v ε ε = E− +E+ e+e− → ϕ+ϕ−
e+e− → µ+µ−
P
v 1 v3
S
v 1
T = |
−ie |
(¯u(p |
)γ |
|
u(p |
)) |
P |
2| |
J |
µ| |
P |
1i |
, |
q2 |
|
||||||||||||
if |
2 |
|
µ |
1 |
h |
|
|
|
|
||||
p1 p2 |
|
|
|
|
|
|
|
|
|
|
|
|
P1 P2 |
q = p1 − p2 = P2 − P1
hP2|Jµ|P1i
u¯2(−ieγµ)u1
h | | i ¯ −
P2 Jµ P1 = U(P2)( ie µ)U(P1)µ
q = p1 − p2 = P2 − P1, p = p1 + p2, P = P1 + P2, Q2 ≡ −q2 = −(p1 − p2)2,
(qP ) = (qp) = 0 |
|
4 × 4 |
µ |
1, γµ, γ5, γµγ5, σµν = |
1 |
(γµγν − γνγµ). |
|
|
|
||
2 |
|
|
¯ |
|
|
|
¯ |
|
U(P2)γ5U(P1) |
|
|
|
U(P2)γµγ5U(P1) |
|
|
|
|
|
¯ |
|
qµ |
|
|
|
U(P2)(−ie µ)U(P1) |
|
|
|
|
q2 6= 0 |
|
|
µ = α(q)γµ − |
β(q) |
|
||
|
|
σµν qν , |
|||
|
2M |
||||
M |
α(q) |
|
β(q) |
||
q2 |
|
|
|
|
|
|
V (q) = eα(q)A0(q) − e |
β(q) |
(σH) , |
||
|
|
||||
|
2M |
||||
α(q) |
β(q) |
|
|
|
|
Z Z
α(q2 = 0) = α(x)d3x = 1, β(q2 = 0) = β(x)d3x = 2.79
|
|
|
|
|
|
|
|
16π2α2 |
|
|
|
|
|
|
|
|
|
|Tif |2 = |
|
|
|
||||
|
|
|
|
|
|
aµν Aµν , |
|
|
|
|||
|
|
|
|
|
Q4 |
|
|
|
||||
aµν = |
1 |
Sp [(ˆp2 + m)γµ(ˆp1 + m)¯γν ] , γ¯ν ≡ γ0γν†γ0 |
= γν , |
|||||||||
|
|
|||||||||||
2 |
||||||||||||
Aµν = |
1 |
Sp h(Pˆ2 |
+ M) µ(Pˆ1 + M)¯ν i , ¯ν ≡ γ0 ν† γ0 = ν . |
|||||||||
|
|
|||||||||||
|
2 |
|||||||||||
µ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
β(q) |
|
|
|
β |
|||
µ = |
α(q)γµ − |
|
(Pµ − 2Mγµ) = (α + β)γµ |
− |
|
Pµ. |
||||||
2M |
2M |
|||||||||||
aµν = pµpν |
− Q2 gµν − |
q2 |
, |
|
|
|
|
||
|
|
|
|
qµqν |
|
|
|
|
|
Aµν = α2 |
+ |
β2Q2 |
PµPν − (α + β)2Q2 |
gµν − |
qµq |
ν |
. |
||
4M2 |
q2 |
|
|||||||
aµν Aµν = 16E2s(α2 + ηβ2) cos2 2θ + 32η(α + β)2M2 sin2 θ2,

γ