ФИАН / Nefedyev_Ktp
.pdf[Aµ(x)Aν (y)]
{ ¯ }
ψα(x)ψβ (y)
C
P
T
CP T
T S
S
1 + 2 → 3 + 4
1 + 2 → 3 + 4
SU(N)
π0 → γγ
e+e−
ep
e+e− pp¯
λϕ4
λϕ4
D
D
α = 1 e2 ≈ 1/137.03599911,
4π ~c
α
ψ(x, t)
•
•
•
ˆ |
ˆ |
∂ |
ˆ |
Lψ = 0, L = i~ |
∂t |
− H, |
|
• |
ˆ |
L |
E M M
•
gµν = (1, −1, −1, −1), δµν = (1, 1, 1, 1).
•
•
•
AµBµ = δµν AµBν = gµν AµBν = A0B0 − AB.
• |
|
|
|
|
|
|
|
|
|
∂/∂t = ∂/∂x0 ≡ ∂0 |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∂µ = |
|
∂ |
= (∂0, ), ∂µ = |
∂ |
= (∂0, − ) |
|||||||||||||
|
|
|
|
|
|
|||||||||||||
∂xµ |
∂xµ |
|||||||||||||||||
∂µjµ(x) = |
∂j0 |
+ |
∂j1 |
+ |
∂j2 |
+ |
|
∂j3 |
= |
|
∂j0 |
+ j = 0. |
||||||
∂t |
|
|
|
|
|
|||||||||||||
|
|
|
∂x1 |
∂x2 |
|
∂x3 |
|
∂t |
||||||||||
|
|
|
|
|
∂µxν = |
∂xν |
|
= δµν |
|
|
|
|||||||
|
|
|
|
|
∂xµ |
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
∂µxµ = |
∂x0 |
+ (x) = δµµ = 4. |
|
||
|
∂x0 |
|
AµBµ ≡ A0B0 − AB.
jµ = (j0, j), ∂µ = (∂0, −),
∂µjµ = ∂0j0 − (− )j = ∂j∂t0 + j.
•
|
1 e2 |
1 |
|
|||
α = |
|
|
|
≈ |
|
. |
4π |
~c |
137 |
||||
√ α = e2/(~c) 4π
•
|
V = LxLyLz |
|
|
|
|
|
|
• |
|
|
|
|
|
|
|
• |
c ~ |
|
|
|
|
|
|
|
~ = c = 1 |
|
|
|
|
|
|
|
[m] = [E] = [p] = m, [t] = [x] = |
1 |
. |
||||
|
|
||||||
|
|
|
|
|
|
m |
|
|
· |
|
|
|
|
|
|
|
~ ≈ 6.582 · 10−22 |
· |
, c ≈ 3 · 108 |
|
· −1 |
||
|
10−15 |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
~c ≈ 197.33 |
· |
≈ |
|
· . |
||
|
5 |
||||||
~ = c = 1
1 · 1 ≈ 5.
1 |
= |
1 |
|
1 |
|
= |
1 |
|
|
λC = |
|
|
= |
|
|
|
= 1 . |
||
m |
0.2 |
0.2(1 |
· 1 ) |
0.2 · 5 |
|||||
|
1 |
|
1 |
|
|
|
103 |
2 |
|
|
|
|
E = |
mv2 = |
(3 |
· 10−6 |
) 3 |
≈ 10−6 |
|
|
= 6.5 · 1012 = 6.5 , |
||||
2 |
2 |
602 |
|
|
||||||||
|
|
|
|
|
|
|
|
1 |
≈ |
1.6 |
· |
10−19 |
|
|
|
|
|
|
|
|
|
|
|
||
Z t2
S = Ldt,
t1
δS = 0
L(t, x, x˙ , x¨, . . .) = L(x˙ , x¨, . . .).
L |
x˙ ≡ v |
L = L(v2)
V
L |
L v2 |
m/2
L = 12mv2,
m
S = R L d4x
m4
|
H |
|
• |
|
h1, h2 H h3 = h1 · h2 H |
• |
|
h1 · (h2 · h3) = (h1 · h2) · h3 |
• |
|
e H e · h = h |
• |
h−1 H h−1 · h = e |
|
|
|
|
|
h1 · h2 6= h2 · h1 |
|
• |
|
e · h = h · e |
• |
|
h · h−1 = e |
• |
h−1 |
h (h−1)−1 = h |
|
|
|
xµ → x′µ = Λνµxν ,
x2 = xµxµ = gµν xµxν = xT gx = x20 − x21 − x22 − x23,
O(1, 3) O
gµν = |
(1, −1, −1, −1). |
|
|
|
|
x2 = xT gx |
|
x2 = x′2 = x′T gx′ = (Λx)T g(Λx) = xT ΛT gΛ x |
|
||
Λ = ±1 |
Λ = −1 |
|
|
x → −x |
x0 → −x0 |
|
|
(x0) |
0 |
||
Λ = +1 |
|
(Λ0) = +1 |
|
SO+(1, 3) SO↑(1, 3)
Λ SO+(1, 3)
Λ |
U(Λ) |
U(Λ1Λ2) = U(Λ1)U(Λ2)
U(Λ) = exp |
|
2ωµν Mµν |
, |
|
|
i |
|
ωµν
Mµν
[Mµν Mρσ] = i (gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ) .
|
Mµν |
|
|
|
|
|
|
|
|
Ji i = 1, 2, 3 |
Ki |
|
|
|
i = 1, 2, 3 |
|
|
|
|
|
Ji = |
1 |
εijkMjk, |
Ki = Mi0 = −M0i, |
|||||
|
|
|
|||||||
|
2 |
||||||||
|
[JiJj ] = iεijkJk, |
[JiKj ] = iεijkKk, |
|
[KiKj ] = −iεijkJk. |
|||||
|
M = |
1 |
(J − iK), |
N = |
1 |
(J |
+ iK) |
||
|
|
|
|
||||||
|
2 |
2 |
|||||||
|
[MiMj ] = iεijkMk, [NiNj ] = iεijkNk, |
[MiNj] = 0, |
|||||||
P : x → −x
P = −1
P
T : x0 → −x0
P T
P
P
