- •Вопрос 1. Понятие системы счисления.
- •Вопрос 2. Перевод чисел из одной системы счисления в другую.
- •Вопрос 3. Представление чисел с фиксированной и плавающей запятой в эвм.
- •Вопрос 4. Форматы данных, прямой, обратный, дополнительный код.
- •5) Выполнение операции алгебраического сложения в эвм.
- •6) Арифметика чисел с плавающей запятой. Погрешности представления.
- •Сложение/вычитание:
- •Погрешности:
- •Умножение:
- •7) Умножение двоичных чисел.
- •8) Методы ускорения выполнения операции умножения.
- •Пример:
- •9) Деление двоичных чисел в прямых кодах.
- •10) Деление двоичных чисел в дополнительных кодах.
- •11) Ускоренные методы операции деления.
- •Деление с восстановлением остатка:
- •Деление без восстановления остатка
- •12) Извлечение корня из двоичных чисел.
- •13) Двоично-десятичные коды (d-коды), их разновидности, области применения.
- •14) Особенности выполнения операции сложения в d-кодах.
- •Примеры:
- •15) Получение дополнительного кода чисел в d-кодах. Алгоритм получения дополнительного кода в d-кодах (на примере 8421-кода):
- •16) Умножение в d-кодах.
- •17) Деление в d-кодах.
- •18) Бинарные отношения, способы задания.
- •Существует 5 способов задания отношений:
- •19) Свойства бинарных отношений
- •20) Толерантность, эквивалентность, отношения порядка.
- •21) Транзитивные замыкания.
- •22)Булевы (переключательные) функции. Способы задания булевых функций
- •23) Элементарные булевы функции двух переменных.
- •Вопрос 24
- •1. Линейные булевы функции
- •26) Дизъюнктивная нормальная форма
- •27) Конъюнктивная нормальная форма.
- •28) Минимизация булевых функций методом Квайна-Мак-Класки
- •29) Минимизация булевых функций методом Блейка
- •30) Не полностью определенные функции, минимизация не полностью определенных функций на картах Карно и методом Квайна-Мак-Класки.
- •Карты Карно
- •31) Минимизация систем переключательных функций
- •32) Алгебра высказываний
- •34) Реализация комбинационных схем в базисе Жегалкина («и», «искл. Или», «1»).
- •Полином Жегалкина (многочлен по модулю 2)
- •Базис Жегалкина
- •Свойства реализации
- •35) Реализация комбинационных схем в базисах «и-не», «2и-не», оценка сложности.
- •36) Реализация комбинационных схем в базисах «или-не», «2или-не», оценка сложности
- •37) Реализация комбинационных схем на дешифраторах
- •38) Реализация комбинационных схем на мультиплексорах
Вопрос 4. Форматы данных, прямой, обратный, дополнительный код.
Формат данных — это способ представления информации в памяти компьютера:
Целые числа — 8, 16, 32, 64 бита (со знаком и без знака).
Символы — обычно 8 бит (например, ASCII, UTF-8).
Логический тип (bool) — 1 бит (0 или 1).
В ЭВМ применяют специальные коды для представления чисел.
Применяются прямой, обратный и дополнительный коды чисел.
Прямой код
Прямой код — способ представления двоичных чисел с фиксированной запятой. Главным образом используется для записи неотрицательных чисел.
При записи числа в прямом коде старший разряд (старший бит) объявляется знаковым разрядом (знаковым битом). Если знаковый бит равен 0, число положительное, иначе — отрицательное. В остальных разрядах (которые называются цифровыми разрядами) записывается двоичное представление модуля числа.
Прямой код двоичного числа совпадает по изображению с записью самого числа. Значение знакового разряда для положительных чисел равно 0, а для отрицательных чисел 1.
Пример. В случае, когда для записи кода выделен один байт, для числа +1101 прямой код 0,0001101, для числа -1101 прямой код 1,0001101.
Обратный код
Обратный код для положительного числа совпадает с прямым кодом.
Для отрицательного числа все цифры числа заменяются на противоположные (1 на 0, 0 на 1), а в знаковый разряд заносится единица.
Пример. Для числа +1101 прямой код 0,0001101; обратный код 0,0001101.
Для числа -1101 прямой код 1,0001101; обратный код 1,1110010.
Дополнительный код
Дополнительный код положительного числа совпадает с прямым кодом.
Для отрицательного числа дополнительный код образуется путем получения обратного кода и добавлением к младшему разряду единицы.
Пример.
Для числа +1101 |
Для числа -1101
|
прямой код 0,0001101; |
1,0001101;
|
обратный код 0,0001101; |
1,1110010.
|
дополнительный код: 0, 00011011, |
0,1110011 |
Все целые отрицательные числа в компьютере представляются дополнительным кодом.
5) Выполнение операции алгебраического сложения в эвм.
Алгебраическое сложение — это операция сложения двух целых чисел, которые могут быть положительными или отрицательными.
При вычислении суммы двух чисел возможны два варианта: слагаемые имеют одинаковые знаки и слагаемые имеют различные знаки. В результате этого алгоритмы получения суммы для каждого из них различны.
Для операндов с одинаковыми знаками:
1. Сложить два числа.
2. Сумме присвоить знак одного из слагаемых.
Алгоритм получения алгебраической суммы (различные знаки):
1. Сравнить знаки слагаемых, и если они одинаковы, то выполнить сложение по первому алгоритму.
2. Если знаки слагаемых разные, то сравнить слагаемые по абсолютной величине.
3. Вычесть из большего меньшее.
4. Результату присвоить знак большего слагаемого.
Пример:
1) А›0, В›0, С›0.
А=+0,101001 В=+0,000101
Апр=0,101001 Впр=0,000101 Спр=А+В
+0,101001
0,000101
0,101110
