- •Вопрос 1. Понятие системы счисления.
- •Вопрос 2. Перевод чисел из одной системы счисления в другую.
- •Вопрос 3. Представление чисел с фиксированной и плавающей запятой в эвм.
- •Вопрос 4. Форматы данных, прямой, обратный, дополнительный код.
- •5) Выполнение операции алгебраического сложения в эвм.
- •6) Арифметика чисел с плавающей запятой. Погрешности представления.
- •Сложение/вычитание:
- •Погрешности:
- •Умножение:
- •7) Умножение двоичных чисел.
- •8) Методы ускорения выполнения операции умножения.
- •Пример:
- •9) Деление двоичных чисел в прямых кодах.
- •10) Деление двоичных чисел в дополнительных кодах.
- •11) Ускоренные методы операции деления.
- •Деление с восстановлением остатка:
- •Деление без восстановления остатка
- •12) Извлечение корня из двоичных чисел.
- •13) Двоично-десятичные коды (d-коды), их разновидности, области применения.
- •14) Особенности выполнения операции сложения в d-кодах.
- •Примеры:
- •15) Получение дополнительного кода чисел в d-кодах. Алгоритм получения дополнительного кода в d-кодах (на примере 8421-кода):
- •16) Умножение в d-кодах.
- •17) Деление в d-кодах.
- •18) Бинарные отношения, способы задания.
- •Существует 5 способов задания отношений:
- •19) Свойства бинарных отношений
- •20) Толерантность, эквивалентность, отношения порядка.
- •21) Транзитивные замыкания.
- •22)Булевы (переключательные) функции. Способы задания булевых функций
- •23) Элементарные булевы функции двух переменных.
- •Вопрос 24
- •1. Линейные булевы функции
- •26) Дизъюнктивная нормальная форма
- •27) Конъюнктивная нормальная форма.
- •28) Минимизация булевых функций методом Квайна-Мак-Класки
- •29) Минимизация булевых функций методом Блейка
- •30) Не полностью определенные функции, минимизация не полностью определенных функций на картах Карно и методом Квайна-Мак-Класки.
- •Карты Карно
- •31) Минимизация систем переключательных функций
- •32) Алгебра высказываний
- •34) Реализация комбинационных схем в базисе Жегалкина («и», «искл. Или», «1»).
- •Полином Жегалкина (многочлен по модулю 2)
- •Базис Жегалкина
- •Свойства реализации
- •35) Реализация комбинационных схем в базисах «и-не», «2и-не», оценка сложности.
- •36) Реализация комбинационных схем в базисах «или-не», «2или-не», оценка сложности
- •37) Реализация комбинационных схем на дешифраторах
- •38) Реализация комбинационных схем на мультиплексорах
Вопрос 1. Понятие системы счисления.
Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков.
Система счисления:
даёт представления множества чисел (целых и/или вещественных);
даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);
отражает алгебраическую и арифметическую структуру чисел.
Системы счисления подразделяются на:
позиционные; ● непозиционные; ● смешанные.
Бывает:
● Двоичная система счисления — позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемахналогических вентилях, двоичная система используется практически во всех современныхкомпьютерахи прочих вычислительныхэлектронных устройствах.
Состоит из 0 – 1.
● Восьмеричная система счисления — позиционная целочисленная система счисления с основанием 8. Для представления чисел в ней используются цифры от 0 до 7.
Восьмеричная система чаще всего используется в областях, связанных с цифровыми устройствами.
● Десятичная система счисления—позиционная система счисления по целочисленному основанию 10. Одна из наиболее распространённых систем.
В ней используются цифры 1,2,3,4,5,6,7,8,9,0, называемые арабскими цифрами.
● Шестнадцатеричная система счисления — позиционная система счисления по целочисленному основанию 16.
В качестве цифр этой системы счисления обычно используются цифры от 0 до 9 и латинские буквы от A до F. Буквы A, B, C, D, E, F имеют значения 1010, 1110, 1210, 1310, 1410, 1510 соответственно.
Вопрос 2. Перевод чисел из одной системы счисления в другую.
Перевод чисел в десятичную систему счисления.
Алгоритм перевода Ap--A10.
Представьте число в развернутой форме. Вычислите сумму ряда. Полученное число является значением числа в десятичной системе счисления. 2416 = 2 * 161 + 4 * 160 = 32 + 4 = 36
●Алгоритм перевода целых десятичных чисел
Для того, чтобы перевести целое десятичное число в другую систему счисления, необходимо осуществлять последовательное деление десятичного числа и затем получаемых частных на основание той системы, в которую оно переводится, до тех пор, пока не получится частное, меньшее делителя. Число в новой системе счисления записывается в виде остатков от деления, в обратном порядке их получения, начиная с последнего полученного частного.
●Алгоритм перевода правильных десятичных дробей
Для того, чтобы перевести правильную десятичную дробь из десятичной системы счисления в другую, необходимо последовательно умножать эту дробь, а затем получаемые дробные части на основание той системы, в которую она переводится. Умножение производится до тех пор, пока дробная часть не станет равной нулю, или будет достигнута требуемая точность. В новой системе дробь записывается в виде целых частей произведений, начиная с первого.
●Перевод чисел из двоичной системы счисления восьмеричную, шестнадцатеричную и обратно
Перевод A2--A8
Для того, чтобы перевести число из двоичной системы счисления в восьмеричную, необходимо: двигаясь от запятой влево и вправо, разбить двоичное число на группы по три разряда, дополняя при необходимости нулями крайние левую и правую группу. Затем триаду заменить соответствующей восьмеричной цифрой
Перевод A2--A16
Для того, чтобы перевести число из двоичной системы счисления в шестнадцатеричную, необходимо: двигаясь от запятой влево и вправо, разбить двоичное число на группы по четыре разряда, дополняя при необходимости нулями крайние левую и правую группу. Затем тетраду заменить соответствующей шестнадцатеричной цифрой
Перевод A8--A2
Для того, чтобы перевести число из восьмеричной системы счисления в двоичную достаточно заменить каждую цифру этого числа соответствующей триадой (см. таблицу триад выше), при этом отбрасывают незначащие нули в старших и младших (после запятой) разрядах.
Перевод A16--A2
Для того, чтобы перевести число из шестнадцатеричной системы счисления в двоичную достаточно заменить каждую цифру этого числа соответствующей тетрадой (см. таблицу триад выше), при этом отбрасывают незначащие нули в старших и младших (после запятой) разрядах.
