Электронный учебно-методический комплекс по учебной дисциплине Философия и методология науки для студентов, слушателей, осваивающих содержание образовательной программы высшего образования 2 ступени
.pdfжение истины – научная аргументация, поиск решения проблемы – деловая, победа в споре - полемическая); по эмоциональной насыщенности (беседа, лекция, доклад – спокойный обмен информацией; дебаты, дискуссия – разновидности спора).
Врамках профессиональной деятельности специалиста инже- нерно-технической квалификации чаще всего используются такие типы аргументации, как доказательство и опровержение. Доказательство – логическая операция, обосновывающая истинность исходного тезиса; опровержение – раскрывает его ложность. В науке доказательство часто основано на проведении наблюдений и экспериментов, использовании частных следствий из основополагающих общепринятых концепций. Доказательства бывают прямые и косвенные. В прямом – истинность тезиса выводится из истинности аргументов, в косвенном – из их ложности. Аналогично в прямом опровержении ложность тезиса следует из ложности аргументов, в косвенном – из их истинности. В качестве прямого опровержения часто используется «сведение к абсурду»: допускается истинность тезиса, из него выводятся логические следствия, ложность которых становится очевидна и служит аргументом в пользу ложности первоначального тезиса.
Врамках научной аргументации кроме опровержения тезиса часто применяется опровержение аргументов (раскрывается их несостоятельность, хотя это ещѐ не означает ложности тезиса), и опровержение демонстрации (раскрывается отсутствие логической связи тезиса с приведѐнными аргументами, хотя это тоже не означает ложности тезиса; необходимо искать новые аргументы, которые будут логически связаны с ним через ту или иную форму умозаключения).
С помощью доказательств наука приобретает новые знания, опровержение позволяет еѐ избавиться от ложных выводов, ошибок и заблуждений. Кроме этих строгих логических операций, научная аргументация широко использует подтверждения (к примеру, в пользу научных гипотез, истинность которых ещѐ не установлена со всей очевидностью), и возражения, направленные на ослабления тезиса, хотя и не обладающие абсолютной логической достоверностью (например, обращение к личности оппонента, к чувствам слушателей). Объяснение раскрывает причину наблюдаемых фактов, поясняет особенности действия фундаментальных законов природы, обобщѐнных в научных теориях. Интерпретация
171
есть истолкование смысла того или иного высказывания (текста), в строгом логическом значении – приписывание некой формализованной знаковой системе того или иного конкретного содержания. В итоге возникает искусственный язык, описывающий соответствующую предметную область. Формальная теория не обоснована, пока не получила адекватной интерпретации на основе принципа изоморфизма и гомоморфизма между знаковой системой и еѐ моделью.
Целью дискуссии является нахождение исчерпывающего решения по обсуждаемому вопросу, выбор единственно истинной точки зрения среди многих возможных вариантов. На практике обычно достигается лишь определѐнная степень согласия участников дискуссии. Вместе с тем, их мнения уточняются, знания приводятся в более строгую систему, происходит приближение к объективно истинному окончательному результату.
3.2.21. Научный метод
Теория и практика. Понятие метода в естественных и технических науках.
Метод – совокупность правил, приемов и операций практического или теоретического освоения действительности. Научный метод служит получению и обоснованию объектив но-истинного знания. Применяемые в науке методы выполняют двоякую роль. Во-первых, следование им – необходимое условие получения достоверного результата. Во-вторых, они выступают как средство социального контроля в рамках научного сообщества. История развития науки, свидетельствует о том, что новое в познании рождалось не столько благодаря улучшению психологических качеств отдельных личностей, сколько путем изобретения и совершенствования методов работы.
Характер метода определяется многими факторами: предметом исследования, степенью общности поставленных задач, накопленным опытом, уровнем развития научного знания. Методы, подходящие для одной области научных исследований, оказываются непригодными для достижения целей в других областях. В то же время многие выдающиеся достижения – следствия переноса методов, хорошо зарекомендовавших себя в одних науках, в другие науки. Основа этого переноса – материальное единство мира.
172
Методы образуют основу учения, которое называется методологией. Она стремится упорядочить, систематизировать методы, установить пригодность их применения в различных областях, ответить на вопрос о том, какого рода условия, средства и действия являются необходимыми и достаточными, чтобы реализовать определѐнные научные цели и, в конечном счете, получить новое объективно-истинное и обоснованное знание. Поэтому методология не ограничивает себя лишь исследованием методов. Она вовлекает в свою сферу множество производных вопросов: что такое знание, каковы критерии его отличия от заблуждения, какие формы развития.
Вструктуре метода центральное место занимают правила – предписания, устанавливающие порядок действий на пути к определенной цели. В базовом знании правила фиксируется закономерность, проявляющаяся в некоторой предметной области. Базовое знание трансформируется в систему операциональных норм, обеспечивающих «подведение», т.е. соединение средств и условий с деятельностью человека. Истинность базового знания – необходимое условие правильности метода.
Вбазовом знании интегрируются результаты самых разнообразных наук. Можно выделить философское, общенаучное, конкретнонаучное его содержание. Особое место в базовом знании принадлежит его предметно-образному компоненту, закрепленному в различного рода методиках. Философское содержание метода составляют положения онтологии и теории познания, антропологии, логики, этики, эстетики, аксиологии. Философия помогает определить правильное направление исследования, т.е., словами, на уровне философской методологии формируется мотивация научноисследовательской деятельности.
Концепции, положения которых справедливы по отношению к целому ряду фундаментальных и частных научных дисциплин, составляют базовое знание методов общенаучного характера. Так, методы теоретической кибернетики, семиотики, теории систем и др. наук глубоко проникли в самые различные отрасли современного познания, но особая роль принадлежит математике. Результаты фундаментальных наук могут транслироваться в методы более конкретных наук. Тесная связь инженерной деятельности с практическими потребностями вызывает необходимость своевременного учета в технических науках многообразных и быстроизменяющих-
173
ся регулятивов социально-экономического характера и не позволяет рассматривать технические науки лишь как сумму прикладных разделов математики, химии и других естественных наук. Знания, применяемые на предметно-чувсвенном уровне некоторого научного исследования, составляют базу его методики. В эмпирическом исследовании методика обеспечивает экспериментальнопроизводственную деятельность.
Всякая методика создается на основе более высоких уровней знаний, но представляет собой совокупность узкоспециализированных установок, включающую в себя достаточно жесткие ограничения – инструкции, проекты, стандарты, технические условия. На уровне методики установки, существующие идеально, в мыслях человека, как бы смыкаются с практическими операциями, завершая образование метода. Без них метод представляет собой нечто умозрительное и не получает выхода во внешний мир. В свою очередь, практика исследования невозможна без влияния идеальных установок. Хорошее владение методикой – показатель высокого профессионализма.
Познавательные методы разделяют на две группы: 1) общелогические – присущие познанию в целом, как на обыденном, так и на теоретическом уровне (анализ, синтез, абстрагирование, обобщение, индукция, дедукция, аналогия, моделирование), 2) приводящие к научному познанию. Последние по отношению к опыту делятся на эмпирические (наблюдение, эксперимент, измерение, описание) и теоретические (идеализация, формализация, мысленный эксперимент, гипотетико – дедуктивный метод, метод математической гипотезы).
3.2.22. Системный метод
Специфика использования в научных исследованиях.
Система – совокупность элементов или частей, находящихся в отношениях и связях друг с другом образуя нечто целое.
Принципы системного метода: выявление зависимости каждого элемента от его места и функций в системе с учетом того, что свойства целого несводимы к сумме свойств его элементов; анализ того, насколько поведение системы обусловлено как особенностями ее отдельных элементов, так и свойствами ее структуры; исследование механизма взаимодействия системы и среды; изучение характера иерархичности, присущего данной системе; обеспечение все-
174
стороннего многоаспектного описания системы; рассмотрение системы как динамичной, развивающейся целостности.
Известны две концепции системного метода - редукционизм и холизм. Редукционизм опирается на следующий тезис: свойства целого объяснимы через свойства составляющих его элементов. Холизм отрицает этот тезис и утверждает, что нельзя без потерь анализировать целое с точки зрения его частей. Это часто формулируется так: целое больше суммы своих частей. Оба эти подхода вполне допустимы на определенном этапе развития науки. С одной стороны, можно спуститься на более низкий уровень и изучать свойства компонентов, не принимая во внимание их системные взаимосвязи. С другой стороны, можно, не обращая внимания на структуру компонентов, исследовать их поведение только с точки зрения их вклада в поведение большей единицы.
Решение, проблемы соотношения части и целого состоит в признании того, что целое является качественно новым образованием. Оно характеризуется свойствами, не присущими отдельным частям (элементам), но возникающими в результате их взаимодействия. И поскольку нет части вне целого (в таком случае они просто элементы), как и целого без (до) части, то познание целого и части осуществляется одновременно. Выделяя части, мы анализируем их как компоненты данного целого. В результате же последующего синтеза целое выступает как диалектически расчлененное, состоящее из частей.
В становлении системного подхода велика роль экономиста, философа, политического деятеля и естествоиспытателя А.А. Богданова (1873 – 1928). Он выдвинул ряд тезисов, предвосхитивших некоторые положения общей теории систем и кибернетики. Предпосылкой формирования системного подхода явился переход к решению задач, связанных с освоением сложных, развивающихся объектов, границы и состав которых далеко не очевидны и требуют специального исследования в каждом отдельном случае. К наиболее сложным системам относятся целенаправленные системы, поведение которых подчинено достижению определенных целей, и самоорганизующиеся системы, способные в процессе функционирования видоизменять свою структуру, т.е. сеть связей и отношений, которая остается относительно постоянной независимо от воздействий на систему.
175
Понятие целостности отображает принципиальную несводимость свойств системы к сумме свойств составляющих ее элементов и невыводимость из последних свойств целого и вместе с тем зависимость каждого элемента, свойства и отношения системы от его места, функций и т.д. внутри целого. В понятии структурности фиксируется тот факт, что поведение системы обусловлено не столько поведением ее отдельных элементов, сколько свойствами ее структуры, и что существует возможность описания системы через установление ее структуры. Взаимозависимость системы и среды означает, что система формирует и проявляет свои свойства в постоянном взаимодействии со средой, оставаясь при этом ведущим активным компонентом взаимодействия. Понятие иерархичности ориентирует на то, что каждый элемент системы может рассматриваться как система, а исследуемая в данном случае система является одним из элементов более широкой системы. Возможность множественности описаний систем существует в силу принципиальной сложности каждой из них, вследствие чего ее адекватное познание требует построения множества различных моделей, каждая из которых описывает лишь определенный ее аспект.
При системном подходе индивидуальные, отдельные объекты рассматриваются как элементы определенных систем, т.е. их бытие и свойства ставятся в зависимость от других элементов этих систем. В то же время изучение объектов включает в себя и знание того, какие системы могут образовывать эти объекты и какое влияние они оказывают на жизнедеятельность таких систем.
3.2.23. Методы теоретического исследования.
Понятие научной теории: абстрактные и идеальные объекты. Метатеоретические основания науки: научная картина мира, идеалы и нормы, стиль научного мышления.
Особенности функционирования и развития научной теории изучены В.С. Степиным на материале физики. Теория делится на фундаментальную и прикладную теорию. Это различие определяет особенности и продолжительность деятельности ученого. Построение теории требует наличия специальных объектов и языка их описания. Важную роль играют методы построения научной теории. Рассмотрим некоторые из них.
Идеализация – мысленное конструирование объектов, которые в действительности не существуют, но широко используются в науч-
176
ном познании. Например, абсолютно твердое тело, точка, линия, абсолютно черное тело, точечный электрический заряд.
Суть идеализации: лишить реальные объекты некоторых присущих им свойств; наделить (мысленно) эти объекты определенными нереальными, гипотетическими, практически неосуществимыми свойствами. С помощью идеализации исключаются свойства и отношения объектов, которые затемняют сущность изучаемого процесса. Использование идеальных объектов в научных исследованиях значительно упрощает сложные системы, что позволяет применять математические методы исследования.
Идеализация, как и всякий научный метод имеет свои границы в познании. Относительность ее проявляется в том, что: 1) идеализированные представления могут уточняться, заменяться новыми; 2) каждая идеализация создается для решения определенных задач. Так, из физики Эйнштейна исключены ньютоновские идеализации «абсолютное пространство» и «абсолютное время».
Формализация – приписывание символам или их системам определенных значений. Формализованные языки отличаются строгостью, четкостью, а их выводы – доказательностью. Формализация позволяет строить знаковые модели объектов, а изучение реальных предметов и процессов заменять исследованием этих моделей. Эффективность формализации определяется тем, насколько правильно выявлено главное в содержании объекта, насколько удачно схвачена его сущность.
Аксиоматический метод широко используется при построении теории математики, математической логики и иных математизированных науках. Суть метода: ряд утверждений принимается без доказательства, а все остальное знание выводится из них по определенным логическим правилам. Принимаемые без доказательства положения называются аксиомами, а выводное знание фиксируется в виде теорем, законов. К аксиоматически построенной системы знаний предъявляется ряд требований: непротиворечивости, полноты, независимости. Аксиоматически построен. теория истинна, когда истинны как аксиомы, так и правила, по которым получены все остальные утверждения теории. В этом случае теория может верно отображать действительность.
Гипотетико-дедуктивный метод – это метод научного исследования, опирающийся на выведение следствий из посылок, истинностные значения которых неизвестно. Использование этого мето-
177
да подразделяется на три этапа: 1) выдвижение некоторой гипотезы; 2) выведение следствий из этой гипотезы; 3) проверка полученных следствий с точки зрения их истинности или ложности. Наиболее трудный этап – выдвижение исходной гипотезы. Ориентиром выдвижения выступает решаемая проблема, а также ход развития научного знания. Если какие либо следствия из гипотезы оказываются ложными, то исходная гипотеза отбрасывается или подвергается корректировки. Истинность следствия является необходимым, но не достаточным условием истинности соответствующих гипотез. При истинности следствий проверка истинности гипотезы может осуществляться: путем выведения гипотезы из других посылок, истинность которых уже установлена, или путем опровержения всех альтернативных гипотез, или путем опытной проверки на эмпирическом уровне познания.
Математическая гипотеза является видом гипотетикодедуктивного метода. На первом этапе методом математической гипотезы создается математическое уравнение, представляющее модификацию ранее известных и проверяемых соотношений. Следующие этапы аналогичны этапам гипотетико-дедуктивного метода. Теории формируют концептуальное ядро дисциплинарной науки. На междисциплинарном уровне теории формируют, как показал В.С. Степин, научную картину мира, интегрированную с философскими принципами, идеалами и нормами научной деятельности.
3.2.24. Методы эмпирического исследования
Экспериментальная наука представлена исследовательскими лабораториями, измерительными системами, экспериментальными комплексами, автоматизированными системами сбора и обработки научной информации. Ее задача заключается в тестировании гипотез, моделей, теорий, концепций, опытных образцов, а также в получении новых знаний о природных процессах. С этой целью используются методы научной деятельности. Рассмотрим некоторые из них.
Наблюдение — это преднамеренное, направленное восприятие, имеющее целью выявление существующих свойств и отношений объекта познания. Оно может быть непосредственным и опосредованным приборами. Наблюдение приобретает научное значение, когда оно в соответствии с исследовательской программой позволяет отобразить объекты с наибольшей точностью и может быть
178
многократно повторено при варьировании условий. Наблюдения можно выделить на случайные и систематические. Научные наблюдения всегда систематические. В систематических наблюдениях обязательно конструируется исследуемая ситуация. Случайные наблюдения – это наблюдения в условиях когда изучаемый в опыте объект не выявлен. Регистрируется только эффект – конечный результат взаимодействия. Неизвестно какие объекты участвуют, и что вызывает явление. Случайное наблюдение может стать причиной исследования, но оно должно стать систематическим в последствии.
Эксперимент – это метод, с помощью которого объект или воспроизводится искусственно, или ставится в заданные условия, отвечающие целям исследования. В ходе эксперимента исследователь активно вмешивается в исследовательский процесс. Эксперимент – высшая форма эмпирического исследования. Он нередко позволяет изучать сущностные характеристики явления. Важнейшие требование к эксперименту – чистота его проведения, для достижения которой исследуемый объект должен быть максимально изолирован от внешних влияний. Затем на него воздействуют контролируемыми факторами. Число таких факторов конечно, и поэтому в границах эксперимента перед исследователем открывается возможность описания любого состояния объекта в прошлом и будущем. Эксперимент, как правило, не проводится без наблюдений и измерений, поэтому он должен отвечать их методическим требованиям.
Научный эксперимент делится на реальный (работает с реальными объектами), мысленный (формализованный, идеализированный), компьютерный
Измерение – метод, с помощью которого получают количественную информацию об объектах в соответствии с эталонными мерами. Простое наблюдение дает информацию о качественных особенностях объекта, а измерение характеризует его количественную сторону. Его погрешность связана с приборами. Постулат о неизбежности погрешностей лежит в основе метрологии – науки об измерении. В соответствии с этим постулатом любые измерения должны сопровождаться оценкой погрешности результатов. Наиболее широкое применение измерение находит в технических науках.
Описание. В ходе наблюдений и экспериментов осуществляется описание, протоколирование. Основное научное требование к опи-
179
санию — его достоверность, точность воспроизведения данных наблюдений и экспериментов. С помощью описания чувственная информация переводится на язык понятий, знаков, схем, рисунков, графиков и цифр, принимая тем самым форму, удобную для систематизации, классификации и обобщения.
3.3. ФИЛОСОФИЯ ЕСТЕСТВОЗНАНИЯ И ТЕХНИКИ
3.3.1. Философия техники
Предмет и задачи. Презумпции техногенной цивилизации. Техника и философия техники.
Техника, наряду с искусством, наукой, является одной из форм задействования человеком внешней природы в процессы деятельности. Это задействование осуществляется в рамках определенных технологических процессов деятельности, используемых человечеством для решения многообразных задач. От других форм задействования внешней природы техника отличается конструктивист- ски-инженерной сущностью. Техника, вследствие этого, отражает творческий и научный потенциал человечества, его технологическую и инженерную культуру. Она же является модификацией природных процессов в артефактной форме, форме коммуникаций и инфраструктуры.
Автономный характер природного начала в технике и технологических процессах формирует фактор риска (техногенных катастроф), который дополняется человеческим фактором, связанным с ошибками людей, физическим и моральным износом технизированной инфраструктуры. Все эти особенности определяют амбивалентность (двойственность) техники и являются предметом осмысления философии техники (философии технологии).
Двойственная сущность техники определяет опору философии техники на: етсествознание как основной источник знаний о внешней природе; техникознание – как обобщенную картину, созданную человечеством технизированной реальности в аспекте присущих ей закономерностей; логику и математику – как рациональную основу инженерной деятельности; гуманитарные науки – как основной источник знаний о человеке, его сознании (мышлении, психике); социально-экономические науки – как важнейшие детерминанты оптимизации технизированной реальности; кибернетику –
180
