Технологии работы в электронных таблицах MS EXCEL 2007
.pdfɌɟɦɚ 3 ɋɉɈɋɈȻɕ ȺȾɊȿɋȺɐɂɂ. ɆȺɌȿɆȺɌɂɑȿɋɄɂȿ ɎɍɇɄɐɂɂ
Ⱥɞɪɟɫɚɰɢɹ ɜ Excel
ȼ ɮɨɪɦɭɥɚɯ Excel ɩɪɢɦɟɧɹɸɬɫɹ ɨɬɧɨɫɢɬɟɥɶɧɵɟ, ɚɛɫɨɥɸɬɧɵɟ ɢ ɫɦɟɲɚɧɧɵɟ ɫɫɵɥɤɢ.
ɉɪɢ ɤɨɩɢɪɨɜɚɧɢɢ ɮɨɪɦɭɥɵ, ɫɨɞɟɪɠɚɳɟɣ ɨɬɧɨɫɢɬɟɥɶɧɵɟ ɫɫɵɥɤɢ, ɨɧɢ ɢɡɦɟɧɹɸɬɫɹ ɨɬɧɨɫɢɬɟɥɶɧɨ ɪɚɫɩɨɥɨɠɟɧɢɹ ɹɱɟɣɤɢ, ɫɨɞɟɪɠɚɳɟɣ ɮɨɪɦɭɥɭ. ɇɚɩɪɢɦɟɪ, ɹɱɟɣɤɚ ɋ1 ɫɨɞɟɪɠɢɬ ɮɨɪɦɭɥɭ =A1+ȼ1. ɉɪɢ ɤɨɩɢɪɨɜɚɧɢɢ ɮɨɪɦɭɥɵ ɜ ɋ2 ɫɫɵɥɤɢ ɢɡɦɟɧɹɸɬɫɹ (=Ⱥ2+ȼ2). ȿɫɥɢ ɧɟɨɛɯɨɞɢɦɨ, ɱɬɨɛɵ ɫɫɵɥɤɢ ɧɟ ɢɡɦɟɧɹɥɢɫɶ ɩɪɢ ɤɨɩɢɪɨɜɚɧɢɢ ɮɨɪɦɭɥɵ, ɧɭɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɚɛɫɨɥɸɬɧɵɟ ɫɫɵɥɤɢ. ɇɚɩɪɢɦɟɪ, ɧɭɠɧɨ ɤ ɱɢɫɥɚɦ ɜ ȼ1:ȼ5 ɩɪɢɛɚɜɢɬɶ ɡɧɚɱɟɧɢɟ ɢɡ Ⱥ1, ɞɥɹ ɷɬɨɝɨ ɜ ɮɨɪɦɭɥɟ =Ⱥ1+ȼ1 ɧɭɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɚɛɫɨɥɸɬɧɭɸ ɫɫɵɥɤɭ ɧɚ Ⱥ1. Ⱦɥɹ ɨɛɨɡɧɚɱɟɧɢɹ ɚɛɫɨɥɸɬɧɵɯ ɫɫɵɥɨɤ ɢɫɩɨɥɶɡɭɟɬɫɹ ɡɧɚɤ $. ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɮɨɪɦɭɥɚ ɜ ɋ1 ɞɨɥɠɧɚ ɢɦɟɬɶ ɜɢɞ =$A$1+ȼ1, ɚ ɩɪɢ ɤɨɩɢɪɨɜɚɧɢɢ ɜ ɋ2 ɢɡɦɟɧɢɬɫɹ ɬɨɥɶɤɨ ɨɬɧɨɫɢɬɟɥɶɧɵɣ ɚɞɪɟɫ (=$A$1+B2). ɋɫɵɥɤɚ ɧɚɡɵɜɚɟɬɫɹ ɫɦɟɲɚɧɧɨɣ, ɟɫɥɢ ɨɞɧɚ ɱɚɫɬɶ ɚɞɪɟɫɚ ɨɬɧɨɫɢɬɟɥɶɧɚɹ, ɞɪɭɝɚɹ — ɚɛɫɨɥɸɬɧɚɹ. ɇɚɩɪɢɦɟɪ, ɜ ɫɫɵɥɤɟ $A1 ɩɪɢ ɤɨɩɢɪɨɜɚɧɢɢ ɮɨɪɦɭɥɵ ɛɭɞɟɬ ɦɟɧɹɬɶɫɹ ɬɨɥɶɤɨ ɫɬɪɨɤɚ, ɜ ɫɫɵɥɤɟ C$5 ɩɪɢ ɤɨɩɢɪɨɜɚɧɢɢ ɮɨɪɦɭɥɵ ɛɭɞɟɬ ɦɟɧɹɬɶɫɹ ɬɨɥɶɤɨ ɫɬɨɥɛɟɰ.
Ⱦɥɹ ɰɢɤɥɢɱɟɫɤɨɝɨ ɢɡɦɟɧɟɧɢɹ ɬɢɩɚ ɫɫɵɥɤɢ ɢɫɩɨɥɶɡɭɟɬɫɹ ɤɥɚɜɢɲɚ F4.
Ⱦɥɹ ɤɨɩɢɪɨɜɚɧɢɹ ɮɨɪɦɭɥɵ ɜ ɫɦɟɠɧɵɟ ɹɱɟɣɤɢ ɢɫɩɨɥɶɡɭɟɬɫɹ ɦɚɪɤɟɪ ɡɚɩɨɥɧɟɧɢɹ.
ɋɜɹɡɵɜɚɧɢɟ ɥɢɫɬɨɜ
ɑɬɨɛɵ ɢɫɩɨɥɶɡɨɜɚɬɶ ɜ ɮɨɪɦɭɥɟ ɞɚɧɧɵɟ, ɪɚɫɩɨɥɨɠɟɧɧɵɟ ɧɚ ɞɪɭɝɨɦ ɪɚɛɨɱɟɦ ɥɢɫɬɟ, ɭɞɨɛɧɨ ɨɬɤɪɵɬɶ ɧɨɜɨɟ ɨɤɧɨ (ɤɧɨɩɤɚ ɇɨɜɨɟ ɨɤɧɨ ɧɚ ɡɚɤɥɚɞɤɟ ȼɢɞ ɥɟɧɬɵ ɢɧɫɬɪɭɦɟɧɬɨɜ) ɢ ɪɚɫɩɨɥɨɠɢɬɶ ɢɯ ɪɹɞɨɦ (ɤɧɨɩɤɚ ɍɩɨɪɹɞɨɱɢɬɶ ɜɫɟ). ȼ ɨɞɧɨɦ ɨɤɧɟ ɨɬɤɪɵɬɶ ɥɢɫɬ ɫ ɮɨɪɦɭɥɨɣ, ɜ ɞɪɭɝɨɦ — ɫ ɞɚɧɧɵɦɢ ɢ ɫɫɵɥɚɬɶɫɹ ɧɚ ɹɱɟɣɤɢ ɫ ɩɨɦɨɳɶɸ ɦɵɲɢ. ɉɪɢ ɷɬɨɦ ɚɜɬɨɦɚɬɢɱɟɫɤɢ ɩɪɨɩɢɫɚɧɧɚɹ ɫɫɵɥɤɚ ɛɭɞɟɬ ɫɨɞɟɪɠɚɬɶ ɢɦɹ ɥɢɫɬɚ, ɧɚɩɪɢɦɟɪ: =Ʌɢɫɬ2!Ⱥ3. Ⱦɥɹ ɪɚɡɞɟɥɟɧɢɹ ɢɦɟɧɢ ɥɢɫɬɚ ɢ ɚɞɪɟɫɚ ɹɱɟɣɤɢ ɢɫɩɨɥɶɡɭɟɬɫɹ ɜɨɫɤɥɢɰɚɬɟɥɶɧɵɣ ɡɧɚɤ.
Ɍɚɤɢɦ ɠɟ ɨɛɪɚɡɨɦ ɦɨɠɧɨ ɫɫɵɥɚɬɶɫɹ ɧɚ ɞɚɧɧɵɟ ɞɪɭɝɨɣ ɤɧɢɝɢ, ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɫɫɵɥɤɚ ɛɭɞɟɬ ɫɨɞɟɪɠɚɬɶ ɢɦɹ ɮɚɣɥɚ, ɤɨɬɨɪɨɟ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɤɜɚɞɪɚɬɧɵɟ ɫɤɨɛɤɢ, ɧɚɩɪɢɦɟɪ: =[kurs.xls]ɂɬɨɝɢ!$D$4.
ɉɪɢɦɟɧɟɧɢɟ ɢɦɟɧ
ɂɦɟɧɚ ɢɫɩɨɥɶɡɭɸɬɫɹ ɞɥɹ ɭɩɪɨɳɟɧɢɹ ɩɪɨɫɦɨɬɪɚ ɢ ɡɚɩɨɦɢɧɚɧɢɹ ɮɨɪɦɭɥ. ɋɫɵɥɤɢ ɜ ɮɨɪɦɭɥɚɯ ɧɚ ɢɦɟɧɚ ɹɜɥɹɸɬɫɹ ɚɛɫɨɥɸɬɧɵɦɢ ɫɫɵɥɤɚɦɢ.
ɑɬɨɛɵ ɩɪɢɫɜɨɢɬɶ ɢɦɹ, ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɨɞɢɧ ɢɡ ɫɩɨɫɨɛɨɜ:
– ɜɵɞɟɥɢɬɶ ɹɱɟɣɤɭ ɢɥɢ ɞɢɚɩɚɡɨɧ, ɚɤɬɢɜɢɡɢɪɨɜɚɬɶ ɉɨɥɟ ɢɦɟɧɢ, ɜɜɟɫɬɢ ɢɦɹ ɢ ɧɚɠɚɬɶ Enter;
21
–ɜɵɞɟɥɢɬɶ ɹɱɟɣɤɭ ɢɥɢ ɞɢɚɩɚɡɨɧ, ɧɚɠɚɬɶ ɤɧɨɩɤɭ ɉɪɢɫɜɨɢɬɶ ɢɦɹ ɧɚ ɡɚɤɥɚɞɤɟ Ɏɨɪɦɭɥɵ ɥɟɧɬɵ ɢɧɫɬɪɭɦɟɧɬɨɜ, ɜ ɫɬɪɨɤɟ ɜɜɨɞɚ ɂɦɹ ɜɜɟɫɬɢ ɢɦɹ ɢ ɧɚɠɚɬɶ OK;
–ɜɵɞɟɥɢɬɶ ɞɢɚɩɚɡɨɧ ɹɱɟɟɤ ɜɦɟɫɬɟ ɫ ɩɨɞɩɢɫɶɸ, ɧɚɩɪɢɦɟɪ, ɞɢɚɩɚɡɨɧ E2:E6 ɜ ɡɚɞɚɧɢɢ II.2,
ɧɚɠɚɬɶ ɤɧɨɩɤɭ ɋɨɡɞɚɬɶ ɢɡ ɜɵɞɟɥɟɧɧɨɝɨ ɮɪɚɝɦɟɧɬɚ ɧɚ ɡɚɤɥɚɞɤɟ Ɏɨɪɦɭɥɵ ɥɟɧɬɵ ɢɧɫɬɪɭɦɟɧɬɨɜ, ɭɫɬɚɧɨɜɢɬɶ ɮɥɚɠɨɤ ɜ ɫɬɪɨɤɟ ɜɵɲɟ ɢ ɧɚɠɚɬɶ OK, ɩɪɢ ɷɬɨɦ ɞɢɚɩɚɡɨɧ ȿ3:ȿ6
ɩɨɥɭɱɢɬ ɢɦɹ ɉɪɟɦɢɹ. Ⱥɧɚɥɨɝɢɱɧɨ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɡɚɝɨɥɨɜɤɢ ɫɬɪɨɤ.
ɑɬɨɛɵ ɩɪɢɦɟɧɢɬɶ ɢɦɹ ɜ ɮɨɪɦɭɥɟ, ɦɨɠɧɨ ɜɜɟɫɬɢ ɟɝɨ ɫ ɤɥɚɜɢɚɬɭɪɵ ɢɥɢ ɧɚɠɚɬɶ ɤɧɨɩɤɭ ɂɫɩɨɥɶɡɨɜɚɬɶ ɜ ɮɨɪɦɭɥɟ. ɑɬɨɛɵ ɭɞɚɥɢɬɶ ɧɟɧɭɠɧɨɟ ɢɥɢ ɧɟɜɟɪɧɨ ɡɚɞɚɧɧɨɟ ɢɦɹ, ɫɥɟɞɭɟɬ ɧɚɠɚɬɶ ɤɧɨɩɤɭ Ⱦɢɫɩɟɬɱɟɪ ɢɦɟɧ, ɜɵɛɪɚɬɶ ɟɝɨ ɜ ɫɩɢɫɤɟ ɢɦɟɧ ɢ ɧɚɠɚɬɶ ɤɧɨɩɤɭ ɍɞɚɥɢɬɶ.
ȼɫɬɚɜɤɚ ɮɭɧɤɰɢɣ
Ⱦɥɹ ɜɫɬɚɜɤɢ ɮɭɧɤɰɢɢ ɩɪɢɦɟɧɹɸɬɫɹ ɤɧɨɩɤɢ ɧɚ ɡɚɤɥɚɞɤɟ Ɏɨɪɦɭɥɵ ɥɟɧɬɵ ɢɧɫɬɪɭɦɟɧɬɨɜ
ɢɥɢ ɤɧɨɩɤɚ f x ɜ ɫɬɪɨɤɟ ɮɨɪɦɭɥ. Ɂɚɬɟɦ ɜ ɨɤɧɟ Ɇɚɫɬɟɪ ɮɭɧɤɰɢɣ ɫɥɟɞɭɟɬ ɢɡ ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɣ ɤɚɬɟɝɨɪɢɢ ɜɵɛɪɚɬɶ ɧɟɨɛɯɨɞɢɦɭɸ ɮɭɧɤɰɢɸ, ɧɚɠɚɬɶ ɈɄ ɢ ɡɚɩɨɥɧɢɬɶ ɞɢɚɥɨɝɨɜɨɟ ɨɤɧɨ
Ⱥɪɝɭɦɟɧɬɵ ɮɭɧɤɰɢɢ (ɪɢɫ. 3.1). |
|
|
|
|
|
|
|
|
|
|
|
|
||||
10 |
|
11 |
2 |
5 |
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
||
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
9 |
6 |
|
Ɋɢɫ. 3.1. Ⱦɢɚɥɨɝɨɜɨɟ ɨɤɧɨ Ⱥɪɝɭɦɟɧɬɵ ɮɭɧɤɰɢɢ
1 — ɫɬɪɨɤɚ ɮɨɪɦɭɥ;
2 — ɪɟɞɚɤɬɢɪɭɟɦɚɹ ɮɨɪɦɭɥɚ;
3— ɨɩɢɫɚɧɢɟ ɜɵɞɟɥɟɧɧɨɣ ɮɭɧɤɰɢɢ (ɈɄɊɍȽɅ);
4— ɩɨɥɹ ɞɥɹ ɡɚɩɨɥɧɟɧɢɹ ɚɪɝɭɦɟɧɬɨɜ ɜɵɞɟɥɟɧɧɨɣ ɮɭɧɤɰɢɢ;
5— ɤɧɨɩɤɚ ɞɥɹ ɫɜɨɪɚɱɢɜɚɧɢɹ ɞɢɚɥɨɝɨɜɨɝɨ ɨɤɧɚ ɩɪɢ ɡɚɩɨɥɧɟɧɢɢ ɚɪɝɭɦɟɧɬɚ;
6— ɨɩɢɫɚɧɢɟ ɜɵɞɟɥɟɧɧɨɝɨ ɚɪɝɭɦɟɧɬɚ;
7— ɡɧɚɱɟɧɢɹ ɚɪɝɭɦɟɧɬɨɜ (ɜ Ⱥ1 Æ 32);
8— ɪɟɡɭɥɶɬɚɬ ɜɵɱɢɫɥɟɧɢɹ ɜɵɞɟɥɟɧɧɨɣ ɮɭɧɤɰɢɢ;
9— ɪɟɡɭɥɶɬɚɬ ɜɵɱɢɫɥɟɧɢɹ ɜɫɟɣ ɮɨɪɦɭɥɵ;
10— ɪɚɫɤɪɵɜɚɸɳɢɣɫɹ ɫɩɢɫɨɤ ɞɥɹ ɜɵɛɨɪɚ ɜɥɨɠɟɧɧɨɣ ɮɭɧɤɰɢɢ;
11— ɤɧɨɩɤɚ ȼɫɬɚɜɤɚ ɮɭɧɤɰɢɢ.
22
Ɏɭɧɤɰɢɢ ɦɨɝɭɬ ɢɫɩɨɥɶɡɨɜɚɬɶɫɹ ɤɚɤ ɚɪɝɭɦɟɧɬɵ ɜ ɞɪɭɝɢɯ ɮɭɧɤɰɢɹɯ. Ɇɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɞɨ 64 ɭɪɨɜɧɟɣ ɜɥɨɠɟɧɢɹ ɮɭɧɤɰɢɣ. ɑɬɨɛɵ ɪɟɞɚɤɬɢɪɨɜɚɬɶ ɮɨɪɦɭɥɭ, ɫɨɞɟɪɠɚɳɭɸ ɮɭɧɤɰɢɢ, ɫɥɟɞɭɟɬ ɧɚɠɚɬɶ ɤɧɨɩɤɭ f x (ɫɦ. ɪɢɫ. 3.1). ɇɚ ɷɤɪɚɧɟ ɨɬɨɛɪɚɡɢɬɫɹ ɞɢɚɥɨɝɨɜɨɟ ɨɤɧɨ ɫ ɚɪɝɭɦɟɧɬɚɦɢ
ɩɟɪɜɨɣ ɮɭɧɤɰɢɢ ɮɨɪɦɭɥɵ. ɂɡɦɟɧɟɧɢɟ ɤɚɤɨɣ-ɥɢɛɨ ɜɥɨɠɟɧɧɨɣ ɮɭɧɤɰɢɢ ɩɪɨɢɫɯɨɞɢɬ ɩɭɬɟɦ ɳɟɥɱɤɚ ɦɵɲɶɸ ɩɨ ɢɦɟɧɢ ɷɬɨɣ ɮɭɧɤɰɢɢ ɜ ɫɬɪɨɤɟ ɮɨɪɦɭɥ.
Ɏɭɧɤɰɢɢ ɜ Excel ɪɚɡɞɟɥɟɧɵ ɧɚ ɤɚɬɟɝɨɪɢɢ. ȼ ɤɚɬɟɝɨɪɢɢ Ɇɚɬɟɦɚɬɢɱɟɫɤɢɟ ɢɦɟɸɬɫɹ ɮɭɧɤɰɢɢ ɞɥɹ ɜɵɩɨɥɧɟɧɢɹ ɚɪɢɮɦɟɬɢɱɟɫɤɢɯ ɨɩɟɪɚɰɢɣ, ɞɥɹ ɨɤɪɭɝɥɟɧɢɹ, ɬɪɢɝɨɧɨɦɟɬɪɢɱɟɫɤɢɟ, ɫɬɟɩɟɧɧɵɟ, ɥɨɝɚɪɢɮɦɢɱɟɫɤɢɟ ɮɭɧɤɰɢɢ.
Ɏɭɧɤɰɢɢ ɨɤɪɭɝɥɟɧɢɹ
ɈɄɊɍȽɅ — ɨɤɪɭɝɥɹɟɬ ɱɢɫɥɨ ɞɨ ɭɤɚɡɚɧɧɨɝɨ ɤɨɥɢɱɟɫɬɜɚ ɪɚɡɪɹɞɨɜ ɩɨ ɨɛɳɢɦ ɩɪɚɜɢɥɚɦ. ɈɄɊɍȽɅȼȼȿɊɏ — ɨɤɪɭɝɥɹɟɬ ɱɢɫɥɨ ɞɨ ɭɤɚɡɚɧɧɨɝɨ ɤɨɥɢɱɟɫɬɜɚ ɪɚɡɪɹɞɨɜ ɜ ɛɨɥɶɲɭɸ (ɩɨ ɦɨɞɭɥɸ) ɫɬɨɪɨɧɭ.
ɈɄɊɍȽɅȼɇɂɁ ɢ ɈɌȻɊ — ɨɤɪɭɝɥɹɸɬ ɱɢɫɥɨ ɞɨ ɭɤɚɡɚɧɧɨɝɨ ɤɨɥɢɱɟɫɬɜɚ ɪɚɡɪɹɞɨɜ ɜ ɦɟɧɶɲɭɸ (ɩɨ ɦɨɞɭɥɸ) ɫɬɨɪɨɧɭ.
Ɍɚɛɥɢɱɧɵɟ ɮɨɪɦɭɥɵ ɢɥɢ ɮɨɪɦɭɥɵ ɦɚɫɫɢɜɨɜ ɩɪɢɦɟɧɹɸɬɫɹ, ɤɨɝɞɚ ɬɪɟɛɭɟɬɫɹ ɜɵɩɨɥɧɢɬɶ ɞɟɣɫɬɜɢɹ ɧɚɞ ɦɚɫɫɢɜɚɦɢ, ɚ ɡɚɬɟɦ ɜɟɪɧɭɬɶ ɨɞɧɨ ɢɥɢ ɦɚɫɫɢɜ ɡɧɚɱɟɧɢɣ. ɑɬɨɛɵ ɜɜɟɫɬɢ ɬɚɛɥɢɱɧɭɸ ɮɨɪɦɭɥɭ:
1.ɍɤɚɠɢɬɟ ɹɱɟɣɤɭ, ɜ ɤɨɬɨɪɭɸ ɧɟɨɛɯɨɞɢɦɨ ɜɜɟɫɬɢ ɮɨɪɦɭɥɭ, ɟɫɥɢ ɮɨɪɦɭɥɚ ɜɨɡɜɪɚɳɚɟɬ ɨɞɧɨ ɡɧɚɱɟɧɢɟ, ɢɥɢ ɜɵɞɟɥɢɬɟ ɞɢɚɩɚɡɨɧ ɹɱɟɟɤ, ɜ ɤɨɬɨɪɵɟ ɧɟɨɛɯɨɞɢɦɨ ɜɜɟɫɬɢ ɮɨɪɦɭɥɭ, ɟɫɥɢ ɮɨɪɦɭɥɚ ɜɨɡɜɪɚɳɚɟɬ ɧɟɫɤɨɥɶɤɨ ɡɧɚɱɟɧɢɣ.
2.ɇɚɛɟɪɢɬɟ ɮɨɪɦɭɥɭ.
3.ɇɚɠɦɢɬɟ ɤɥɚɜɢɲɢ Ctrl+Shift+Enter. Ɍɚɛɥɢɱɧɚɹ ɮɨɪɦɭɥɚ ɚɜɬɨɦɚɬɢɱɟɫɤɢ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɮɢɝɭɪɧɵɟ ɫɤɨɛɤɢ { }.
Ⱥɪɝɭɦɟɧɬɚɦɢ ɬɚɛɥɢɱɧɨɣ ɮɨɪɦɭɥɵ ɦɨɝɭɬ ɛɵɬɶ ɤɚɤ ɫɫɵɥɤɢ ɧɚ ɞɢɚɩɚɡɨɧɵ ɹɱɟɟɤ, ɬɚɤ ɢ ɦɚɫɫɢɜɵ ɤɨɧɫɬɚɧɬ. ɉɪɚɜɢɥɚ ɫɨɡɞɚɧɢɹ ɦɚɫɫɢɜɚ ɤɨɧɫɬɚɧɬ:
–ɜɟɫɶ ɦɚɫɫɢɜ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɮɢɝɭɪɧɵɟ ɫɤɨɛɤɢ { }
–ɡɧɚɱɟɧɢɹ ɫɬɪɨɤ ɪɚɡɞɟɥɹɸɬɫɹ ɬɨɱɤɚɦɢ ɫ ɡɚɩɹɬɨɣ ;
–ɡɧɚɱɟɧɢɹ ɫɬɨɥɛɰɨɜ ɪɚɡɞɟɥɹɸɬɫɹ ɞɜɨɟɬɨɱɢɟɦ :
ɑɬɨɛɵ ɢɡɦɟɧɢɬɶ ɬɚɛɥɢɱɧɭɸ ɮɨɪɦɭɥɭ, ɤɨɬɨɪɚɹ ɜɨɡɜɪɚɳɚɟɬ ɦɚɫɫɢɜ, ɧɟɨɛɯɨɞɢɦɨ ɜɵɞɟɥɢɬɶ ɜɟɫɶ ɦɚɫɫɢɜ ɢ ɨɬɪɟɞɚɤɬɢɪɨɜɚɬɶ ɮɨɪɦɭɥɭ ɜ ɫɬɪɨɤɟ ɮɨɪɦɭɥ. Ɂɚɜɟɪɲɚɬɶ ɪɟɞɚɤɬɢɪɨɜɚɧɢɟ ɬɚɛɥɢɱɧɨɣ ɮɨɪɦɭɥɵ ɬɚɤɠɟ ɧɭɠɧɨ ɤɨɦɛɢɧɚɰɢɟɣ ɤɥɚɜɢɲ Ctrl+Shift+Enter.
Ɏɭɧɤɰɢɹ ɆɈȻɊ(ɦɚɫɫɢɜ) ɜɨɡɜɪɚɳɚɟɬ ɨɛɪɚɬɧɭɸ ɦɚɬɪɢɰɭ.
Ɏɭɧɤɰɢɹ ɆɍɆɇɈɀ(ɦɚɫɫɢɜ1;ɦɚɫɫɢɜ2) ɜɨɡɜɪɚɳɚɟɬ ɩɪɨɢɡɜɟɞɟɧɢɟ ɦɚɬɪɢɰ. Ɋɟɡɭɥɶɬɚɬɨɦ ɹɜɥɹɟɬɫɹ ɦɚɫɫɢɜɫ ɬɚɤɢɦ ɠɟ ɱɢɫɥɨɦ ɫɬɪɨɤ, ɤɚɤɦɚɫɫɢɜ1, ɢɫ ɬɚɤɢɦ ɠɟ ɱɢɫɥɨɦ ɫɬɨɥɛɰɨɜ, ɤɚɤɦɚɫɫɢɜ2.
23
Ɏɨɪɦɭɥɵ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɪɹɞɚ ɦɚɬɟɦɚɬɢɱɟɫɤɢɯ ɮɭɧɤɰɢɣ ɞɥɹ ɡɧɚɱɟɧɢɹ ɯ, ɜɜɟɞɟɧɧɨɝɨ ɜ
ɹɱɟɣɤɭ Ⱥ1, ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɬɚɛɥ. 3.1.
Ɍɚɛɥɢɰɚ 3.1
Ɇɚɬɟɦɚɬɢɱɟɫɤɨɟ |
Ɏɨɪɦɭɥɚ ɜ MS Excel |
|||||||||
|
|
|
ɜɵɪɚɠɟɧɢɟ |
|||||||
|
|
|
|
|||||||
|
|
|
|
x |
|
|
|
|
|
=ABS(A1) |
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|||
|
|
|
ln x |
|
=LN(A1) |
|||||
|
|
|
e x |
|
=EXP(A1) |
|||||
|
|
|
|
x |
|
=ɄɈɊȿɇɖ(Ⱥ1) |
||||
|
|
|
|
|
|
|
|
|||
|
|
|
cosSx |
|
=COS(ɉɂ()*Ⱥ1) |
|||||
|
|
|
sin 2 x |
|
=SIN(A1)^2 |
|||||
3 |
|
|
e 3x x |
tg x |
=ɋɌȿɉȿɇɖ((EXP(-3*A1)+A1)/ABS(SIN(A1)–7*A1)+TAN(A1);1/3) |
|||||
|
|
sin x 7 x |
|
|
||||||
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
ɉɪɢɦɟɪ 3.1. ȼ ɬɚɛɥɢɰɟ (ɪɢɫ. 3.2) ɩɪɢɜɟɞɟɧ ɫɬɚɠ ɢ ɡɚɪɚɛɨɬɧɚɹ ɩɥɚɬɚ ɫɨɬɪɭɞɧɢɤɨɜ. Ɉɩɪɟɞɟɥɢɬɶ:
–ɤɚɤɨɣ ɭɞɟɥɶɧɵɣ ɜɟɫ ɫɨɫɬɚɜɥɹɟɬ ɡɚɪɚɛɨɬɧɚɹ ɩɥɚɬɚ ɤɚɠɞɨɝɨ ɫɨɬɪɭɞɧɢɤɚ ɜ ɨɛɳɟɦ ɨɛɴɟɦɟ ɡɚɪɚɛɨɬɧɨɣ ɩɥɚɬɵ;
–ɫɭɦɦɭ ɡɚɪɚɛɨɬɧɨɣ ɩɥɚɬɵ ɫɨɬɪɭɞɧɢɤɨɜ, ɢɦɟɸɳɢɯ ɫɬɚɠ ɛɨɥɟɟ 5 ɥɟɬ.
ȼɵɩɨɥɧɟɧɢɟ:
1. ȼɵɱɢɫɥɢɬɶ ɫɭɦɦɭ ɡɚɪɚɛɨɬɧɨɣ ɩɥɚɬɵ ɜɫɟɯ ɫɨɬɪɭɞɧɢɤɨɜ (ɹɱɟɣɤɚ ɋ11) =ɋɍɆɆ(ɋ2:ɋ10)
2.ȼɵɱɢɫɥɢɬɶ ɭɞɟɥɶɧɵɣ ɜɟɫ ɡɚɪɚɛɨɬɧɨɣ ɩɥɚɬɵ ɩɟɪɜɨɝɨ ɫɨɬɪɭɞɧɢɤɚ (ɹɱɟɣɤɚ D2) =C2/$C$11. ȼ ɞɚɧɧɨɣ ɮɨɪɦɭɥɟ ɢɫɩɨɥɶɡɭɟɬɫɹ ɚɛɫɨɥɸɬɧɚɹ ɫɫɵɥɤɚ ɧɚ ɹɱɟɣɤɭ ɋ11, ɬ.ɤ. ɨɧɚ ɧɟ ɞɨɥɠɧɚ ɢɡɦɟɧɹɬɶɫɹ ɩɪɢ ɤɨɩɢɪɨɜɚɧɢɢ ɮɨɪɦɭɥɵ.
3.ɉɪɨɬɹɧɭɬɶ ɦɚɪɤɟɪɨɦ ɮɨɪɦɭɥɭ, ɫɨɡɞɚɧɧɭɸ ɜ D2, ɞɥɹ ɨɫɬɚɥɶɧɵɯ ɫɨɬɪɭɞɧɢɤɨɜ. əɱɟɣɤɚɦ D2:D10 ɧɚɡɧɚɱɢɬɶ ɩɪɨɰɟɧɬɧɵɣ ɮɨɪɦɚɬ ɫ ɞɜɭɦɹ ɞɟɫɹɬɢɱɧɵɦɢ ɡɧɚɤɚɦɢ.
4.Ⱦɥɹ ɧɚɯɨɠɞɟɧɢɹ ɫɭɦɦɵ ɡɚɪɚɛɨɬɧɨɣ ɩɥɚɬɵ ɫɨɬɪɭɞɧɢɤɨɜ, ɢɦɟɸɳɢɯ ɫɬɚɠ ɛɨɥɟɟ 5 ɥɟɬ (ɹɱɟɣɤɚ ɋ12), ɫɥɟɞɭɟɬ ɢɫɩɨɥɶɡɨɜɚɬɶ ɮɭɧɤɰɢɸ ɋɍɆɆȿɋɅɂ. ȼ ɧɟɣ ɧɭɠɧɨ ɭɤɚɡɚɬɶ ɞɢɚɩɚɡɨɧ ȼ2:ȼ10, ɩɨ ɤɨɬɨɪɨɦɭ ɡɚɞɚɟɬɫɹ ɭɫɥɨɜɢɟ ɧɚ ɫɬɚɠ — ">5", ɢ ɞɢɚɩɚɡɨɧ ɋ2:ɋ10, ɩɨ ɤɨɬɨɪɨɦɭ ɩɪɨɢɡɜɨɞɢɬɫɹ ɫɭɦɦɢɪɨɜɚɧɢɟ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɮɨɪɦɭɥɚ ɛɭɞɟɬ ɢɦɟɬɶ ɜɢɞ Æ
=ɋɍɆɆȿɋɅɂ(B2:B10;">5";C2:C10)
ɉɪɢɦɟɪ 3.2. ȼ ɹɱɟɣɤɚɯ Ⱥ3:Ⱥ13 (ɪɢɫ. 3.3) ɞɚɧɵ ɱɢɫɥɚ, ɚ ɜ ɹɱɟɣɤɚɯ B2:D2 — ɡɧɚɱɟɧɢɹ ɪɚɡɪɹɞɨɜ, ɞɨ ɤɨɬɨɪɵɯ ɧɭɠɧɨ ɨɤɪɭɝɥɢɬɶ ɞɚɧɧɵɟ ɱɢɫɥɚ. ȼ ɹɱɟɣɤɟ B3 ɧɚɩɢɫɚɬɶ ɮɨɪɦɭɥɭ ɞɥɹ ɨɤɪɭɝɥɟɧɢɹ ɢ ɫɤɨɩɢɪɨɜɚɬɶ ɟɟ ɞɥɹ ɡɚɩɨɥɧɟɧɢɹ ɜɫɟɣ ɬɚɛɥɢɰɵ.
ȼɵɩɨɥɧɟɧɢɟ:
1.ɑɢɫɥɚ ɜ Excel ɦɨɠɧɨ ɨɤɪɭɝɥɹɬɶ ɫ ɢɡɛɵɬɤɨɦ, ɫ ɧɟɞɨɫɬɚɬɤɨɦ ɢɥɢ ɩɨ ɨɛɳɢɦ ɩɪɚɜɢɥɚɦ. Ɍɚɤ ɤɚɤ ɜ ɭɫɥɨɜɢɢ ɡɚɞɚɱɢ ɧɟ ɭɤɚɡɚɧ ɫɩɨɫɨɛ ɨɤɪɭɝɥɟɧɢɹ, ɛɭɞɟɦ ɢɫɩɨɥɶɡɨɜɚɬɶ ɮɭɧɤɰɢɸ ɈɄɊɍȽɅ.
2.ɉɟɪɜɵɦ ɚɪɝɭɦɟɧɬɨɦ ɞɚɧɧɨɣ ɮɭɧɤɰɢɢ ɭɤɚɡɵɜɚɟɬɫɹ ɨɤɪɭɝɥɹɟɦɨɟ ɱɢɫɥɨ, ɪɚɫɩɨɥɨɠɟɧɧɨɟ ɜ ɹɱɟɣɤɟ Ⱥ3. Ⱦɥɹ ɩɪɚɜɢɥɶɧɨɝɨ ɤɨɩɢɪɨɜɚɧɢɹ ɮɨɪɦɭɥɵ ɜ ɫɬɨɥɛɰɵ ɋ ɢ D ɜ ɫɫɵɥɤɟ ɧɚ Ⱥ3 ɞɨɥɠɟɧ ɛɵɬɶ ɚɛɫɨɥɸɬɧɵɣ ɫɬɨɥɛɟɰ ($A3).
24
Ɋɢɫ. 3.2 |
Ɋɢɫ. 3.3 |
3.ȼɬɨɪɵɦ ɚɪɝɭɦɟɧɬɨɦ ɭɤɚɡɵɜɚɟɬɫɹ ɱɢɫɥɨ ɪɚɡɪɹɞɨɜ ɨɤɪɭɝɥɟɧɢɹ — ɹɱɟɣɤɚ ȼ2. Ⱦɥɹ ɩɪɚɜɢɥɶɧɨɝɨ ɤɨɩɢɪɨɜɚɧɢɹ ɮɨɪɦɭɥɵ ɜ ɫɬɪɨɤɢ 4—13 ɜ ɫɫɵɥɤɟ ɧɚ ȼ2 ɞɨɥɠɧɚ ɛɵɬɶ ɚɛɫɨɥɸɬɧɚɹ ɫɬɪɨɤɚ (ȼ$2).
4.Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɮɨɪɦɭɥɚ ɜ ȼ3 ɛɭɞɟɬ ɢɦɟɬɶ ɜɢɞ Æ =ɈɄɊɍȽɅ($Ⱥ3;ȼ$2), ɤɨɬɨɪɭɸ ɦɨɠɧɨ ɫɤɨɩɢɪɨɜɚɬɶ ɞɥɹ ɡɚɩɨɥɧɟɧɢɹ ɜɫɟɣ ɬɚɛɥɢɰɵ.
ɉɪɢɦɟɪ 3.3. Ⱦɚɧɵ ɦɚɬɪɢɰɵ Ⱥ ɢ ȼ (ɪɢɫ. 3.4). ɇɚɣɬɢ ɦɚɬɪɢɰɭ ɋ = Ⱥ – ȼ.
Ɋɢɫ. 3.4
ȼɵɩɨɥɧɟɧɢɟ:
1.Ɇɚɬɪɢɰɚ ɋ ɢɦɟɟɬ ɬɚɤɭɸ ɠɟ ɪɚɡɦɟɪɧɨɫɬɶ ɤɚɤ ɦɚɬɪɢɰɵ Ⱥ ɢ ȼ, ɩɨɷɬɨɦɭ ɧɭɠɧɨ ɜɵɞɟɥɢɬɶ ɞɢɚɩɚɡɨɧ ɢɡ 3 ɫɬɪɨɤ ɢ 2 ɫɬɨɥɛɰɨɜ (G2:H4).
2.ȼ ɫɬɪɨɤɟ ɮɨɪɦɭɥ ɧɚɩɢɫɚɬɶ ɮɨɪɦɭɥɭ Æ =A2:B4 – D2:E4
3.Ɂɚɜɟɪɲɢɬɶ ɜɜɨɞ ɮɨɪɦɭɥɵ ɤɨɦɛɢɧɚɰɢɟɣ ɤɥɚɜɢɲ Ctrl+Shift+Enter. Ɏɨɪɦɭɥɚ ɛɭɞɟɬ ɚɜɬɨɦɚɬɢɱɟɫɤɢ ɡɚɤɥɸɱɟɧɚ ɜ ɮɢɝɭɪɧɵɟ ɫɤɨɛɤɢ ɢ ɛɭɞɟɬ ɨɞɢɧɚɤɨɜɨɣ ɞɥɹ ɜɫɟɯ ɹɱɟɟɤ ɞɢɚɩɚɡɨɧɚ G2:H4.
25
Ʌɚɛɨɪɚɬɨɪɧɚɹ ɪɚɛɨɬɚ ʋ 3
ɐɟɥɶ ɪɚɛɨɬɵ: ɢɡɭɱɢɬɶ ɫɩɨɫɨɛɵ ɨɬɧɨɫɢɬɟɥɶɧɨɣ ɢ ɚɛɫɨɥɸɬɧɨɣ ɚɞɪɟɫɚɰɢɢ ɹɱɟɟɤ, ɧɚɭɱɢɬɶɫɹ ɫɜɹɡɵɜɚɬɶ ɪɚɛɨɱɢɟ ɥɢɫɬɵ, ɢɦɟɧɨɜɚɬɶ ɹɱɟɣɤɢ, ɩɪɢɦɟɧɹɬɶ ɢɦɟɧɚ ɜ ɮɨɪɦɭɥɚɯ, ɩɪɨɢɡɜɨɞɢɬɶ ɜɵɱɢɫɥɟɧɢɹ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɦɚɬɟɦɚɬɢɱɟɫɤɢɯ ɮɭɧɤɰɢɣ ɢ ɬɚɛɥɢɱɧɵɯ ɮɨɪɦɭɥ.
Ɂɚɞɚɧɢɹ
I.ɋɩɨɫɨɛɵ ɚɞɪɟɫɚɰɢɢ. ɋɜɹɡɵɜɚɧɢɟ ɥɢɫɬɨɜ
1.ɋɨɡɞɚɬɶ ɮɚɣɥ ɧɚ ɨɫɧɨɜɟ ɲɚɛɥɨɧɚ «Excel_lab_3».
2.ɇɚ ɥɢɫɬɟ «ɉɪɨɞɭɤɰɢɹ 1» ɜɜɟɫɬɢ ɮɨɪɦɭɥɵ ɬɨɥɶɤɨ ɜ ɹɱɟɣɤɢ ȼ3, ȼ4, ȼ5, ȼ6 ɢ ȼ8,
ɢɫɩɨɥɶɡɭɹ ɫɫɵɥɤɢ ɧɚ ɹɱɟɣɤɢ ɥɢɫɬɨɜ «ɂɫɯɨɞɧɵɟ ɞɚɧɧɵɟ», «ɍɞɟɥɶɧɵɣ ɜɟɫ» ɢ «ɉɪɨɞɭɤɰɢɹ 1».
ɋɩɪɚɜɨɱɧɵɟ ɮɨɪɦɭɥɵ
Ⱦɨɯɨɞ ɨɬ ɨɛɨɪɨɬɚ = ɐɟɧɚ ɟɞɢɧɢɰɵ ɩɪɨɞɭɤɰɢɢ * Ɉɛɴɟɦ ɫɛɵɬɚ ɋɟɛɟɫɬɨɢɦɨɫɬɶ = ɋɟɛɟɫɬɨɢɦɨɫɬɶ ɟɞɢɧɢɰɵ ɩɪɨɞɭɤɰɢɢ * Ɉɛɴɟɦ ɫɛɵɬɚ Ɂɚɬɪɚɬɵ ɧɚ ɪɟɤɥɚɦɭ = Ⱦɨɯɨɞ ɨɬ ɨɛɨɪɨɬɚ * % Ɋɟɤɥɚɦɵ ɇɚɤɥɚɞɧɵɟ ɪɚɫɯɨɞɵ = Ⱦɨɯɨɞ ɨɬ ɨɛɨɪɨɬɚ * % ɇɚɤɥɚɞɧɵɯ ɪɚɫɯɨɞɨɜ
ɉɪɢɛɵɥɶ = Ⱦɨɯɨɞ ɨɬ ɨɛɨɪɨɬɚ – (ɋɟɛɟɫɬɨɢɦɨɫɬɶ + Ɂɚɬɪɚɬɵ ɧɚ ɪɟɤɥɚɦɭ + ɇɚɤɥɚɞɧɵɟ ɪɚɫɯɨɞɵ)
ȼɧɢɦɚɧɢɟ!!!
Ɏɨɪɦɭɥɵ ɞɨɥɠɧɵ ɩɪɚɜɢɥɶɧɨ ɤɨɩɢɪɨɜɚɬɶɫɹ ɜ ɭɤɚɡɚɧɧɵɟ ɫɬɪɟɥɤɚɦɢ ɹɱɟɣɤɢ. Ⱦɥɹ ɷɬɨɝɨ ɧɟɤɨɬɨɪɵɟ ɫɫɵɥɤɢ ɧɟɨɛɯɨɞɢɦɨ ɫɞɟɥɚɬɶ ɚɛɫɨɥɸɬɧɵɦɢ ɢɥɢ ɫɦɟɲɚɧɧɵɦɢ, ɢ ɡɚɬɟɦ ɫɤɨɩɢɪɨɜɚɬɶ ɮɨɪɦɭɥɵ ɜ ɫɨɫɟɞɧɢɟ ɹɱɟɣɤɢ, ɤɚɤ ɩɨɤɚɡɚɧɨ ɫɬɪɟɥɤɚɦɢ ɧɚ ɪɢɫ. 3.5.
Ɋɢɫ. 3.5
3. ɇɚ ɥɢɫɬɟ «ɉɪɨɞɭɤɰɢɹ 2» ɪɚɫɫɱɢɬɚɬɶ ɚɧɚɥɨɝɢɱɧɭɸ ɬɚɛɥɢɰɭ ɞɥɹ ɩɪɨɞɭɤɰɢɢ 2.
26
4.ɇɚ ɥɢɫɬɟ «Ƚɨɞɨɜɨɣ ɨɬɱɟɬ» ɜ ɹɱɟɣɤɭ ȼ3 ɜɜɟɫɬɢ ɮɨɪɦɭɥɭ ɞɥɹ ɜɵɱɢɫɥɟɧɢɹ ɫɭɦɦɚɪɧɨɝɨ ɨɛɴɟɦɚ ɫɛɵɬɚ ɩɪɨɞɭɤɰɢɢ 1 ɢ ɩɪɨɞɭɤɰɢɢ 2 ɡɚ ɜɟɫɶ ɝɨɞ (ɢɫɩɨɥɶɡɨɜɚɬɶ ɮɭɧɤɰɢɸ ɋɍɆɆ). ɋɤɨɩɢɪɨɜɚɬɶ ɮɨɪɦɭɥɭ ɞɥɹ ɧɚɯɨɠɞɟɧɢɹ ɨɫɬɚɥɶɧɵɯ ɩɨɤɚɡɚɬɟɥɟɣ (ɪɢɫ. 3.6).
Ɋɢɫ. 3.6
5.ɂɡɦɟɧɢɬɶ ɤɚɤɢɟ-ɥɢɛɨ ɡɧɚɱɟɧɢɹ ɧɚ ɥɢɫɬɟ «ɂɫɯɨɞɧɵɟ ɞɚɧɧɵɟ» ɢ ɩɪɨɫɥɟɞɢɬɶ ɢɡɦɟɧɟɧɢɹ ɧɚ ɞɪɭɝɢɯ ɥɢɫɬɚɯ.
II. ɉɪɢɦɟɧɟɧɢɟ ɢɦɟɧ
1.ɇɚ ɥɢɫɬɟ «Ɂɚɪɩɥɚɬɚ» ɩɪɢɫɜɨɢɬɶ ɢɦɟɧɚ ɨɛɥɚɫɬɹɦ B3:B6, C3:C6, D3:D6. ɋɨɡɞɚɬɶ ɢɦɟɧɚ ɨɛɥɚɫɬɹɦ E3:E6, F3:F6, G3:G6, H3:H6. Ɉɬɞɟɥɶɧɵɦ ɹɱɟɣɤɚɦ Ⱥ9, B9, C9, D9, E9 ɡɚɞɚɬɶ ɢɦɟɧɚ,
ɢɫɩɨɥɶɡɭɹ ɩɨɥɟ ɢɦɟɧɢ.
2.Ɋɚɫɫɱɢɬɚɬɶ ɬɚɛɥɢɰɭ, ɢɫɩɨɥɶɡɭɹ ɬɨɥɶɤɨ ɫɨɡɞɚɧɧɵɟ ɢɦɟɧɚ (ɪɢɫ. 3.7).
ɋɩɪɚɜɨɱɧɵɟ ɮɨɪɦɭɥɵ
Ɉɤɥɚɞ =Ɍɚɪɢɮ * Ȼɚɡɨɜɚɹ ɜɟɥɢɱɢɧɚ |
ɇɚɱɢɫɥɟɧɨ = Ɉɤɥɚɞ + ɇɚɞɛɚɜɤɚ + ɉɪɟɦɢɹ |
ɉɪɟɦɢɹ =% ɩɪɟɦɢɢ * Ɉɤɥɚɞ |
ɉɨɞɨɯɨɞɧɵɣ ɧɚɥɨɝ = % ɧɚɥɨɝɚ * ɇɚɱɢɫɥɟɧɨ |
ɇɚɞɛɚɜɤɚ = % ɧɚɞɛɚɜɤɢ * Ɉɤɥɚɞ |
ɉɪɨɮɫɨɸɡ = % ɜɡɧɨɫɚ * ɇɚɱɢɫɥɟɧɨ |
Ʉ ɜɵɞɚɱɟ = ɇɚɱɢɫɥɟɧɨ – (ɉɨɞɨɯɨɞɧɵɣ ɧɚɥɨɝ +ɉɪɨɮɫɨɸɡ)
Ɋɢɫ. 3.7
27
III. ɂɫɩɨɥɶɡɨɜɚɧɢɟ ɦɚɬɟɦɚɬɢɱɟɫɤɢɯ ɮɭɧɤɰɢɣ ɢ ɬɚɛɥɢɱɧɵɯ ɮɨɪɦɭɥ
1. ɇɚ ɥɢɫɬɟ «Ɂɚɞɚɱɢ» ɜɵɱɢɫɥɢɬɶ ɡɧɚɱɟɧɢɹ ɞɚɧɧɵɯ ɜɵɪɚɠɟɧɢɣ ɩɪɢ ɯ ɪɚɜɧɵɯ -1; -0,5; 0; 0,5; 1
y |
1 x |
|
z |
1 x e x |
||||||
1 ln2 (x 5) |
|
sin x |
|
2 |
|
x |
|
3 cos2 Sx |
||
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
2. ɇɚɣɬɢ ɩɥɨɳɚɞɶ ɨɮɢɫɚ, ɢɫɩɨɥɶɡɭɹ ɨɞɧɭ ɮɭɧɤɰɢɸ:
Ʉɨɦɧɚɬɚ |
Ⱦɥɢɧɚ, ɦ |
ɒɢɪɢɧɚ, ɦ |
1 |
5 |
4,2 |
2 |
3,4 |
2,8 |
3 |
4,2 |
3 |
4 |
5,8 |
4,5 |
5 |
4 |
2,7 |
ɉɥɨɳɚɞɶ ɨɮɢɫɚ: |
|
|
3.ɂɫɩɨɥɶɡɭɹ ɨɞɧɭ ɮɭɧɤɰɢɸ, ɧɚɣɬɢ ɩɨ ɢɫɯɨɞɧɵɦ ɞɚɧɧɵɦ ɩɪɟɞɵɞɭɳɟɣ ɡɚɞɚɱɢ ɫɭɦɦɚɪɧɭɸ ɲɢɪɢɧɭ ɤɨɦɧɚɬ, ɞɥɢɧɚ ɤɨɬɨɪɵɯ ɛɨɥɶɲɟ 4 ɦɟɬɪɨɜ.
4.Ɉɤɪɭɝɥɢɬɶ ɱɢɫɥɚ ɢɡ ɩɟɪɜɨɝɨ ɫɬɨɥɛɰɚ, ɢɫɩɨɥɶɡɭɹ ɭɤɚɡɚɧɧɵɟ ɮɭɧɤɰɢɢ:
|
|
|
|
|
|
ɈɄɊɍȽɅȼɇɂɁ |
ɈɄɊɍȽɅȼȼȿɊɏ |
ɈɄɊɍȽɅ |
|
|
|||||||
|
|
|
|
23,45 |
|
|
|
20 |
|
|
30 |
|
|
23 |
|
|
|
|
|
|
|
5,3333 |
|
|
5,333 |
|
|
6 |
|
|
10 |
|
|
||
|
|
|
|
-3,222 |
|
|
-3,22 |
|
|
-3,3 |
|
|
0 |
|
|
||
|
|
|
|
-228,88 |
|
|
|
-200 |
|
|
-1000 |
|
-229 |
|
|
||
5. Ⱦɚɧɵ ɦɚɬɪɢɰɵ: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
§ 1 |
3 |
1· |
|
|
§ |
2 |
4 |
2 |
2· |
|
|
§ |
5 15 10 5 |
· |
||
A(2; 3) |
B (3; 4) |
¨ |
1 |
1 |
1 |
¸ |
; C (2; 4) |
||||||||||
¨ |
|
|
¸; |
¨ |
0¸ |
¨ |
|
|
¸ |
||||||||
|
¨ |
3 |
¸ |
|
|
¨ |
|
|
|
¸ |
|
|
¨ |
5 8 4 4 |
¸ |
||
|
© 2 |
3¹ |
|
|
3 |
4 |
1 |
|
|
© |
¹ |
||||||
|
|
|
|
|
|
|
© |
2¹ |
|
|
|
|
|
|
|||
ɉɨɥɭɱɢɬɶ ɦɚɬɪɢɰɵ D = Ⱥ·ȼ ɢ F = D + ɋ
Ʉɨɧɬɪɨɥɶɧɵɟ ɜɨɩɪɨɫɵ ɤ ɬɟɦɟ
1.ɇɚɡɨɜɢɬɟ ɫɩɨɫɨɛɵ ɚɞɪɟɫɚɰɢɢ ɢ ɪɚɡɥɢɱɢɹ ɦɟɠɞɭ ɧɢɦɢ.
2.Ʉɨɝɞɚ ɩɪɢɦɟɧɹɸɬɫɹ ɪɚɡɥɢɱɧɵɟ ɬɢɩɵ ɫɫɵɥɨɤ? Ʉɚɤ ɦɨɠɧɨ ɢɡɦɟɧɢɬɶ ɬɢɩ ɫɫɵɥɤɢ?
3.Ʉɚɤ ɛɭɞɟɬ ɡɚɩɢɫɚɧɚ ɜ ɮɨɪɦɭɥɟ ɜ ɹɱɟɣɤɟ Ⱥ1 ɧɚ ɥɢɫɬɟ Ɉɮɢɫ:
–ɚɛɫɨɥɸɬɧɚɹ ɫɫɵɥɤɚ ɧɚ ɹɱɟɣɤɭ ȿ3, ɪɚɫɩɨɥɨɠɟɧɧɭɸ ɧɚ ɥɢɫɬɟ Ɉɬɱɟɬɵ;
–ɨɬɧɨɫɢɬɟɥɶɧɚɹ ɫɫɵɥɤɚ ɧɚ ɹɱɟɣɤɭ ȼ2 ɧɚ Ʌɢɫɬ1 ɮɚɣɥɚ lab3.xls;
–ɫɫɵɥɤɚ ɧɚ ɞɢɚɩɚɡɨɧ ɹɱɟɟɤ ɫ F3 ɩɨ G7 ɧɚ ɥɢɫɬɟ Ɉɬɱɟɬɵ;
–ɫɫɵɥɤɚ ɧɚ ɢɦɹ ɉɪɢɛɵɥɶ ɧɚ ɥɢɫɬɟ Ɉɬɱɟɬɵ;
–ɫɦɟɲɚɧɧɚɹ ɫɫɵɥɤɚ ɧɚ ɹɱɟɣɤɭ ɋ1 (ɚɛɫɨɥɸɬɧɚɹ ɫɬɪɨɤɚ) ɧɚ ɥɢɫɬɟ Ɉɮɢɫ;
28
–ɫɦɟɲɚɧɧɚɹ ɫɫɵɥɤɚ ɧɚ ɹɱɟɣɤɭ ȿ5 (ɚɛɫɨɥɸɬɧɵɣ ɫɬɨɥɛɟɰ) ɧɚ Ʌɢɫɬ2 ɮɚɣɥɚ lab7.xls;
ɢɤɚɤ ɢɡɦɟɧɢɬɫɹ ɷɬɚ ɫɫɵɥɤɚ ɩɪɢ ɤɨɩɢɪɨɜɚɧɢɢ ɮɨɪɦɭɥɵ ɜ Ⱥ2?
4.Ʉɚɤɢɦ ɨɛɪɚɡɨɦ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɫɜɹɡɵɜɚɧɢɟ ɞɚɧɧɵɯ ɧɚ ɪɚɡɧɵɯ ɪɚɛɨɱɢɯ ɥɢɫɬɚɯ?
5.Ⱦɥɹ ɱɟɝɨ ɩɪɢɦɟɧɹɸɬɫɹ ɢɦɟɧɚ? ɇɚɡɨɜɢɬɟ ɫɩɨɫɨɛɵ ɢɯ ɩɪɢɫɜɨɟɧɢɹ.
6.Ʉɚɤ ɦɨɠɧɨ ɜɫɬɚɜɢɬɶ ɜ ɮɨɪɦɭɥɭ ɫɫɵɥɤɭ ɧɚ ɢɦɟɧɨɜɚɧɧɭɸ ɨɛɥɚɫɬɶ?
7.Ʉɚɤ ɨɬɤɪɵɬɶ ɧɚ ɷɤɪɚɧɟ ɞɜɚ ɥɢɫɬɚ ɨɞɧɨɣ ɪɚɛɨɱɟɣ ɤɧɢɝɢ?
8.ɑɬɨ ɬɚɤɨɟ ɬɚɛɥɢɱɧɵɟ ɮɨɪɦɭɥɵ, ɤɚɤ ɨɧɢ ɜɜɨɞɹɬɫɹ ɢ ɪɟɞɚɤɬɢɪɭɸɬɫɹ?
9.Ʉɚɤ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɜɫɬɚɜɤɚ ɮɭɧɤɰɢɣ?
10.ɋɤɨɥɶɤɨ ɭɪɨɜɧɟɣ ɜɥɨɠɟɧɧɵɯ ɮɭɧɤɰɢɣ ɞɨɩɭɫɤɚɟɬɫɹ ɜ Excel ɢ ɤɚɤ ɦɨɠɧɨ ɪɟɞɚɤɬɢɪɨɜɚɬɶ ɮɨɪɦɭɥɵ, ɫɨɞɟɪɠɚɳɢɟ ɜɥɨɠɟɧɧɵɟ ɮɭɧɤɰɢɢ?
11.ɉɨɹɫɧɢɬɟ ɪɚɛɨɬɭ ɫ ɮɭɧɤɰɢɹɦɢ ɨɤɪɭɝɥɟɧɢɹ.
29
Ɍɟɦɚ 4 ɂɋɉɈɅɖɁɈȼȺɇɂȿ ȼɋɌɊɈȿɇɇɕɏ ɎɍɇɄɐɂɃ
Ɏɭɧɤɰɢɢ ɞɚɬɵ ɢ ɜɪɟɦɟɧɢ ɋȿȽɈȾɇə — ɜɨɡɜɪɚɳɚɟɬ ɬɟɤɭɳɭɸ ɞɚɬɭ. Ⱦɚɧɧɚɹ ɮɭɧɤɰɢɹ ɧɟ ɢɦɟɟɬ ɚɪɝɭɦɟɧɬɨɜ.
ȽɈȾ — ɜɨɡɜɪɚɳɚɟɬ ɝɨɞ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɣ ɚɪɝɭɦɟɧɬɭ ɞɚɬɚ_ɜ_ɱɢɫɥɨɜɨɦ_ɮɨɪɦɚɬɟ. Ƚɨɞ ɨɩɪɟɞɟɥɹɟɬɫɹ ɤɚɤ ɰɟɥɨɟ ɜ ɢɧɬɟɪɜɚɥɟ 1900-9999.
Ɇȿɋəɐ — ɜɨɡɜɪɚɳɚɟɬ ɦɟɫɹɰ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɣ ɚɪɝɭɦɟɧɬɭ ɞɚɬɚ_ɜ_ɱɢɫɥɨɜɨɦ_ɮɨɪɦɚɬɟ. Ɇɟɫɹɰ ɨɩɪɟɞɟɥɹɟɬɫɹ ɤɚɤ ɰɟɥɨɟ ɜ ɢɧɬɟɪɜɚɥɟ ɨɬ 1 (əɧɜɚɪɶ) ɞɨ 12 (Ⱦɟɤɚɛɪɶ).
Ⱦȿɇɖ — ɜɨɡɜɪɚɳɚɟɬ ɧɨɦɟɪ ɞɧɹ ɜ ɦɟɫɹɰɟ ɞɥɹ ɚɪɝɭɦɟɧɬɚ ɞɚɬɚ_ɜ_ɱɢɫɥɨɜɨɦ_ɮɨɪɦɚɬɟ. Ⱦɟɧɶ ɜɨɡɜɪɚɳɚɟɬɫɹ ɤɚɤ ɰɟɥɨɟ ɱɢɫɥɨ ɞɢɚɩɚɡɨɧɟ ɨɬ 1 ɞɨ 31.
ȾȺɌȺ — ɜɨɡɜɪɚɳɚɟɬ ɞɚɬɭ ɞɥɹ ɡɚɞɚɧɧɵɯ ɝɨɞɚ, ɦɟɫɹɰɚ ɢ ɞɧɹ. ɋɢɧɬɚɤɫɢɫ: ȾȺɌȺ(ɝɨɞ; ɦɟɫɹɰ; ɞɟɧɶ)
ɄɈɇɆȿɋəɐȺ — ɜɨɡɜɪɚɳɚɟɬ ɩɨɫɥɟɞɧɢɣ ɞɟɧɶ ɦɟɫɹɰɚ, ɨɬɫɬɨɹɳɟɝɨ ɧɚ ɭɤɚɡɚɧɧɨɟ ɤɨɥɢɱɟɫɬɜɨ ɦɟɫɹɰɟɜ ɨɬ ɞɚɬɵ ɧɚɱ_ɞɚɬɚ.
ɋɢɧɬɚɤɫɢɫ: ɄɈɇɆȿɋəɐȺ(ɧɚɱ_ɞɚɬɚ; ɱɢɫɥɨ_ɦɟɫɹɰɟɜ)
ȾȺɌȺɆȿɋ — ɜɨɡɜɪɚɳɚɟɬ ɞɚɬɭ ɜ ɱɢɫɥɨɜɨɦ ɮɨɪɦɚɬɟ, ɨɬɫɬɨɹɳɭɸ ɧɚ ɡɚɞɚɧɧɨɟ ɤɨɥɢɱɟɫɬɜɨ ɦɟɫɹɰɟɜ ɜɩɟɪɟɞ ɢɥɢ ɧɚɡɚɞ ɨɬ ɡɚɞɚɧɧɨɣ ɞɚɬɵ.
ɋɢɧɬɚɤɫɢɫ: ȾȺɌȺɆȿɋ(ɧɚɱ_ɞɚɬɚ; ɱɢɫɥɨ_ɦɟɫɹɰɟɜ)
ȾɈɅəȽɈȾȺ — ɜɨɡɜɪɚɳɚɟɬ ɞɨɥɸ ɝɨɞɚ, ɤɨɬɨɪɭɸ ɫɨɫɬɚɜɥɹɟɬ ɤɨɥɢɱɟɫɬɜɨ ɞɧɟɣ ɦɟɠɞɭ ɞɜɭɦɹ ɞɚɬɚɦɢ (ɧɚɱɚɥɶɧɨɣ ɢ ɤɨɧɟɱɧɨɣ).
ɋɢɧɬɚɤɫɢɫ: ȾɈɅəȽɈȾȺ(ɧɚɱ_ɞɚɬɚ; ɤɨɧ_ɞɚɬɚ;ɛɚɡɢɫ)
ɑɂɋɌɊȺȻȾɇɂ — ɜɨɡɜɪɚɳɚɟɬ ɤɨɥɢɱɟɫɬɜɨ ɪɚɛɨɱɢɯ ɞɧɟɣ ɦɟɠɞɭ ɧɚɱ_ɞɚɬɚ ɢ ɤɨɧ_ɞɚɬɚ. Ɋɚɛɨɱɢɦɢ ɞɧɹɦɢ ɫɱɢɬɚɸɬɫɹ ɜɫɟ ɞɧɢ, ɡɚ ɢɫɤɥɸɱɟɧɢɟɦ ɫɛ, ɜɫ ɢ ɩɪɚɡɞɧɢɤɨɜ.
ɋɢɧɬɚɤɫɢɫ: ɑɂɋɌɊȺȻȾɇɂ(ɧɚɱ_ɞɚɬɚ;ɤɨɧ_ɞɚɬɚ;ɩɪɚɡɞɧɢɤɢ)
ɊȺȻȾȿɇɖ — ɜɨɡɜɪɚɳɚɟɬ ɞɚɬɭ, ɨɬɫɬɨɹɳɭɸ ɧɚ ɡɚɞɚɧɧɨɟ ɤɨɥɢɱɟɫɬɜɨ ɪɚɛɨɱɢɯ ɞɧɟɣ ɜɩɟɪɟɞ ɢɥɢ ɧɚɡɚɞ ɨɬ ɧɚɱ_ɞɚɬɚ. Ɋɚɛɨɱɢɦɢ ɞɧɹɦɢ ɫɱɢɬɚɸɬɫɹ ɜɫɟ ɞɧɢ, ɡɚ ɢɫɤɥɸɱɟɧɢɟɦ ɫɛ, ɜɫ ɢ ɩɪɚɡɞɧɢɤɨɜ.
ɋɢɧɬɚɤɫɢɫ: ɊȺȻȾȿɇɖ(ɧɚɱ_ɞɚɬɚ;ɤɨɥɢɱɟɫɬɜɨ_ɞɧɟɣ;ɩɪɚɡɞɧɢɤɢ)
Ʌɨɝɢɱɟɫɤɢɟ ɢ ɫɬɚɬɢɫɬɢɱɟɫɤɢɟ ɮɭɧɤɰɢɢ
ȿɋɅɂ — ɜɨɡɜɪɚɳɚɟɬ ɨɞɧɨ ɡɧɚɱɟɧɢɟ, ɟɫɥɢ ɡɚɞɚɧɧɨɟ ɭɫɥɨɜɢɟ ɩɪɢ ɜɵɱɢɫɥɟɧɢɢ ɞɚɟɬ ɡɧɚɱɟɧɢɟ ɂɋɌɂɇȺ, ɢ ɞɪɭɝɨɟ ɡɧɚɱɟɧɢɟ, ɟɫɥɢ ɅɈɀɖ. Ɏɭɧɤɰɢɹ ȿɋɅɂ ɢɫɩɨɥɶɡɭɟɬɫɹ ɞɥɹ ɭɫɥɨɜɧɨɣ ɩɪɨɜɟɪɤɢ ɡɧɚɱɟɧɢɣ ɢ ɮɨɪɦɭɥ.
ɋɢɧɬɚɤɫɢɫ: ȿɋɅɂ(ɥɨɝ_ɜɵɪɚɠɟɧɢɟ;ɡɧɚɱɟɧɢɟ_ɟɫɥɢ_ɢɫɬɢɧɚ;ɡɧɚɱɟɧɢɟ_ɟɫɥɢ_ɥɨɠɶ)
ɂ — ɜɨɡɜɪɚɳɚɟɬ ɡɧɚɱɟɧɢɟ ɂɋɌɂɇȺ, ɟɫɥɢ ɜɫɟ ɚɪɝɭɦɟɧɬɵ ɢɦɟɸɬ ɡɧɚɱɟɧɢɟ ɂɋɌɂɇȺ, ɢ ɜɨɡɜɪɚɳɚɟɬ ɡɧɚɱɟɧɢɟ ɅɈɀɖ, ɟɫɥɢ ɯɨɬɹ ɛɵ ɨɞɢɧ ɚɪɝɭɦɟɧɬ ɢɦɟɟɬ ɡɧɚɱɟɧɢɟ ɅɈɀɖ.
ɋɢɧɬɚɤɫɢɫ: ɂ(ɥɨɝɢɱɟɫɤɨɟ_ɡɧɚɱɟɧɢɟ1; ɥɨɝɢɱɟɫɤɨɟ_ɡɧɚɱɟɧɢɟ2; ...)
ɂɅɂ — ɜɨɡɜɪɚɳɚɟɬ ɂɋɌɂɇȺ, ɟɫɥɢ ɯɨɬɹ ɛɵ ɨɞɢɧ ɢɡ ɚɪɝɭɦɟɧɬɨɜ ɢɦɟɟɬ ɡɧɚɱɟɧɢɟ ɂɋɌɂɇȺ, ɢ ɜɨɡɜɪɚɳɚɟɬ ɅɈɀɖ, ɟɫɥɢ ɜɫɟ ɚɪɝɭɦɟɧɬɵ ɢɦɟɸɬ ɡɧɚɱɟɧɢɟ ɅɈɀɖ.
ɋɢɧɬɚɤɫɢɫ: ɂɅɂ(ɥɨɝɢɱɟɫɤɨɟ_ɡɧɚɱɟɧɢɟ1;ɥɨɝɢɱɟɫɤɨɟ_ɡɧɚɱɟɧɢɟ2; ...)
30
