- •ОСНОВЫ ТЕОРИИ И КОНСТРУКЦИИ ТРАНСМИССИЙ
- •1. ТРАНСМИССИИ ОБРАЗЦОВ БРОНЕТАНКОВОГО ВООРУЖЕНИЯ
- •1.1. Характеристика двигателей внутреннего сгорания
- •1.2. Внешние сопротивления движению машины
- •1.2.2. Сопротивление равномерному прямолинейному движению гусеничной машины на подъеме
- •1.2.3. Сила инерции машины
- •1.2.4. Сила сопротивления на крюке
- •1.2.5. Сила сопротивления воздуха
- •1.3. Необходимость трансмиссии и ее назначение
- •1.4. Требования к трансмиссиям образцов БТВ
- •1.5. Классификация трансмиссий и их сравнительная оценка
- •1.5.1. Механические трансмиссии
- •1.5.2. Гидромеханические трансмиссии
- •1.5.3. Электромеханические трансмиссии
- •2. ФРИКЦИОННЫЕ УСТРОЙСТВА ТРАНСМИССИЙ
- •2.1. Требования к фрикционам и тормозам и пути их выполнения
- •2.2. Классификация фрикционов и тормозов
- •2.3. Классификация тормозов
- •2.4. Характеристика фрикционных материалов
- •2.5. Особенности фрикционов, работающих в масле, и их сравнительная оценка
- •2.6. Анализ выполненных конструкций фрикционов и тормозов
- •2.6.1. Главный фрикцион боевой машины пехоты БМП-2
- •2.6.2. Главный фрикцион боевой машины десантной БМД-1п
- •2.7. Конструкция ленточных тормозов
- •2.7.2. Тормоза боевой машины десантной БМД-1п
- •3. КОРОБКИ ПЕРЕДАЧ
- •3.1. Требования к коробкам передач и основные пути их выполнения
- •3.2. Классификация коробок передач
- •3.2.1. Классификация простых коробок передач
- •3.3. Сравнительная оценка выполненных конструкций коробок передач
- •3.3.1. Сравнительная оценка простых коробок передач
- •3.3.2. Планетарные коробки передач
- •3.4. Анализ схем выполненных конструкций планетарных коробок передач
- •3.4.1. Планетарный редуктор танка «Леопард»
- •3.4.2. Коробка передач танка Т-72Б
- •4. МЕХАНИЗМЫ ПОВОРОТА
- •4.1. Основы теории поворота гусеничной машины
- •4.2. Требования, предъявляемые к механизмам поворота
- •4.3. Классификация, сравнительная оценка и анализ работы механизмов поворота
- •4.4. Конструкция механизмов поворота
- •4.4.1. Анализ конструкций и работы механизмов поворота первого типа
- •4.4.2. Анализ конструкций и работы механизмов поворота второго типа
- •4.4.3. Механизмы поворота третьего типа
- •5. ДВУХПОТОЧНЫЕ МЕХАНИЗМЫ ПЕРЕДАЧ И ПОВОРОТА
- •5.1. Требования к механизмам передач и поворота (МПП) и основные пути их выполнения
- •5.2. Классификация двухпоточных механизмов передач и поворота
- •5.3. Анализ работы механизмов передач и поворота
- •5.3.1. МПП первой группы (на примере МПП танка Т-V)
- •5.3.2. Конструкция МПП второй группы (на примере МПП боевой машины артиллерии)
- •5.3.3. Конструкция МПП третьей группы (на примере МПП танка "ЦЕНТУРИОН")
- •6. ГИДРОМЕХАНИЧЕСКИЕ ТРАНСМИССИИ
- •6.1. Определение и назначение гидромеханических трансмиссий
- •6.2. Классификация гидромеханических трансмиссий и их сравнительная оценка
- •6.3. Типы гидродинамических передач
- •6.3.1. Гидромуфта
- •6.3.2. Гидротрансформатор
- •6.3.3. Комплексная гидропередача
- •6.4. Основы конструкции гидромеханических трансмиссий
- •6.4.1. Гидромеханическая коробка передач
- •6.4.2. Гидропередача с двухпоточным механизмом передач и поворота
- •6.4.3. Трансмиссии танка «Леопард» и БМП «Мардер»
- •6.4.4. Трансмиссия «КРОСС-ДРАЙВ»
- •6.4.5. Гидромеханической трансмиссии танка М60
- •7. ПРИВОДЫ УПРАВЛЕНИЯ
- •7.1. Требования, предъявляемые к приводам управления и основные пути выполнения этих требований
- •7.2.1. Классификация и сравнительная конструктивная оценка приводов управления
- •7.2.2. Классификация гидросервоприводов
- •7.3. Анализ конструкций ГСП
- •ЛИТЕРАТУРА
при ограниченных давлениях способны работать в масле. Большинству же предъявляемых требований эта группа фрикционных материалов не удовлетворяет, в частности, недостаточно стабильным оказывается коэффициент трения. Так, например, коэффициент трения стали по серому чугуну СЧ-15-32 с увеличением скорости скольжения от 0 до 30 м/с уменьшается более чем в 2,5 раза.
Металлокерамические фрикционные материалы на медной и железной основе имеют высокий и наиболее стабильный коэффициент трения, обладают высокой износоустойчивостью, особенно при работе в масле. Медной металлокерамике свойственны высокая теплопроводность, "плавность" сцепления и химическая стабильность в масляной среде. Недостатки металлокерамических материалов заключаются в дороговизне и сложности изготовления (особенно в сложности соединения фрикционных колец с диском), в большом удельном весе и ограниченной прочности.
Из пластмассовых материалов наибольший интерес в настоящее время представляют асбокаучуки и пластмассы с фенольноформальдегидной смолой, уступающие металлокерамическим материалам лишь по теплопроводности и прочности, а также незначительно по коэффициенту трения и износоустойчивости. В то же время они проще и дешевле в изготовлении, имеют меньший удельный вес, являясь перспективными фрикционными материалами.
2.5. Особенности фрикционов, работающих в масле, и их сравнительная оценка
В настоящее время широко применяются фрикционные устройства (фрикционы и дисковые тормоза), работающие в масле. В этих фрикционных устройствах используется граничное трение, т. е. трение тончайших масляных пленок, прочно удерживающихся на поверхностях дисков трения. Такой вид трения характеризуется достаточно высоким и стабильным
коэффициентом трения (примерно = 0,1), большими допускаемыми удельными давлениями (до 40 кгс/см2) и ничтожными износами. Для обеспечения граничного трения выполняются специальные конструкции рабочих поверхностей трения в виде системы смазочных каналов.
Во фрикционных устройствах, работающих в масле, применяются стальные диски с двусторонним слоем (1,0—1,2 мм) металлокерамики в паре со стальными дисками с гладкой шлифованной поверхностью. На поверхностях трения металлокерамических дисков выполняются наиболее зарекомендовавшие себя каналы (рис. 8) в виде однозаходной плоской спирали, пересекаемой радиальными канавками с чередующимся выходом их к внутреннему и наружному периметрам диска. Устанавливают диски так, чтобы не совпадало направление спирали с направлением вращения. Масло, обычно подаваемое к внутреннему периметру дисков, проходит по канавкам (на рис. 8 показано стрелками), чем обеспечивается хороший контакт его с поверхностями трения, удаление продуктов износа и охлаждение дисков.
