Методические указания по выполнению контрольной работы № 2 по математике для студентов инженерно-технических специальностей заочной формы обучения
.pdf
2.2. ȼɵɱɢɫɥɟɧɢɟ ɞɥɢɧ ɞɭɝ ɤɪɢɜɵɯ. ȼɵɱɢɫɥɟɧɢɟ ɨɛɴɟɦɨɜ
ȿɫɥɢ ɩɥɨɫɤɚɹ ɤɪɢɜɚɹ ɡɚɞɚɧɚ ɭɪɚɜɧɟɧɢɟɦ y=f(x), ɝɞɟ f(x) – ɧɟɩɪɟɪɵɜɧɨ ɞɢɮɮɟɪɟɧɰɢɪɭɟɦɚɹ ɮɭɧɤɰɢɹ, adxdb, ɬɨ ɞɥɢɧɚ l ɞɭɝɢ ɷɬɨɣ ɤɪɢɜɨɣ ɜɵɪɚɠɚɟɬɫɹ ɢɧɬɟɝɪɚɥɨɦ
|
|
b |
|
|
|
l ³ 1 (yc)2 dx . |
|||
|
|
a |
|
|
|
ȿɫɥɢ ɠɟ ɤɪɢɜɚɹ ɡɚɞɚɧɚ ɩɚɪɚɦɟɬɪɢɱɟɫɤɢɦɢ ɭɪɚɜɧɟɧɢɹɦɢ x=x(t), y=y(t) (DdtdE), |
|||
ɬɨ l |
E |
(x c)2 |
(yc)2 dt . |
|
³ |
||||
|
t |
t |
||
D
Ⱥɧɚɥɨɝɢɱɧɨ ɧɚɯɨɞɢɬɫɹ ɞɥɢɧɚ ɞɭɝɢ ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɨɣ ɤɪɢɜɨɣ, ɨɩɢɫɚɧɧɨɣ ɩɚɪɚɦɟɬɪɢɱɟɫɤɢɦɢ ɭɪɚɜɧɟɧɢɹɦɢ: x = x(t), y = y(t), z = z(t), D d t d E
l |
E |
(x c)2 |
(yc)2 |
(zc)2 dt . |
|
³ |
|||||
|
t |
t |
t |
||
|
D |
|
|
|
ȿɫɥɢ ɡɚɞɚɧɨ ɩɨɥɹɪɧɨɟ ɭɪɚɜɧɟɧɢɟ ɤɪɢɜɨɣ U = U(M), D d M d E, ɬɨ
E
l ³ |
U |
2 |
c |
2 |
dM . |
|
(U ) |
|
D
ȿɫɥɢ ɩɥɨɳɚɞɶ S(x) ɫɟɱɟɧɢɹ ɬɟɥɚ ɩɥɨɫɤɨɫɬɶɸ, ɩɟɪɩɟɧɞɢɤɭɥɹɪɧɨɣ ɨɫɢ Ox, ɹɜɥɹɟɬɫɹ ɧɟɩɪɟɪɵɜɧɨɣ ɮɭɧɤɰɢɟɣ ɧɚ ɨɬɪɟɡɤɟ [a, b], ɬɨ ɨɛɴɟɦ ɬɟɥɚ ɜɵɱɢɫɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ
b
V ³S (x )dx . a
Ɉɛɴɟɦ V ɬɟɥɚ, ɨɛɪɚɡɨɜɚɧɧɨɝɨ ɜɪɚɳɟɧɢɟɦ ɜɨɤɪɭɝ ɨɫɢ Ox ɤɪɢɜɨɥɢɧɟɣɧɨɣ ɬɪɚɩɟɰɢɢ, ɨɝɪɚɧɢɱɟɧɧɨɣ ɤɪɢɜɨɣ y=f(x), (f(x)t0), ɨɫɶɸ ɚɛɫɰɢɫɫ ɢ ɩɪɹɦɵɦɢ x=a ɢ x=b (a<b), ɜɵɪɚɠɚɟɬɫɹ ɢɧɬɟɝɪɚɥɨɦ
b
V S³ f 2 (x)dx .
a
31
|
|
ɉɪɢɦɟɪ 2.8. ȼɵɱɢɫɥɢɬɶ ɞɥɢɧɭ ɞɭɝɢ ɤɪɢɜɨɣ y2 x 3 , ɨɬɫɟɱɟɧɧɨɣ ɩɪɹɦɨɣ |
|||||
x |
4 |
(ɪɢɫ. 2.5). |
|
|
|
|
|
3 |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
y |
|
x |
4 |
|
|
|
|
|
|
|
|
||
|
|
|
Ⱥ |
3 |
|
|
|
|
|
|
|
|
|
||
|
|
y2 |
x3 |
|
|
|
|
0 |
4 |
ɯ |
|
3 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ȼ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɋɢɫ. 2.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
Ɋɟɲɟɧɢɟ. Ⱦɥɢɧɚ ɞɭɝɢ ȺɈȼ ɪɚɜɧɚ ɭɞɜɨɟɧɧɨɣ ɞɥɢɧɟ ɞɭɝɢ ɈȺ. |
|
|
||||||||||||||||||||||||||||||||||||||
|
|
|
3 |
|
|
|
3 |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
x 2 , yc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
y |
|
|
|
2 x 2 . |
Ɍɨɝɞɚ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
2 |
|
4 |
|
|
|
|
|
|
|
4 |
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
3 |
|
|
|
|
§3 |
· |
3 |
|
|
9 |
|
|
4 |
3 |
|
§ |
|
9 |
· |
|
§ |
9 |
|
· |
|
|
|
|||||||||
l |
lOA |
|
|
|
|
|
|
|
xdx |
|
|
|
2 |
|
x |
|
|
|
|||||||||||||||||||||||||
2 |
|
³ |
|
1 ¨ |
|
x ¸ |
dx |
³ 1 |
4 |
|
9 |
³ |
|
¨1 |
4 |
x¸ |
|
d¨1 |
4 |
¸ |
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
0 |
|
|
|
|
©2 |
¹ |
|
0 |
|
|
|
|
0 |
|
© |
|
¹ |
|
|
© |
|
¹ |
|
|
|
||||||||||||
|
|
§ |
|
|
|
9 |
· |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
4 |
¨1 |
|
|
|
x¸ |
|
|
|
4 / 3 |
|
8 |
43 / 2 |
1 |
56 |
|
|
|
56 |
|
112 . |
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
© |
|
|
|
¹ |
|
|
|
|
; l |
2 |
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
9 |
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
27 |
27 |
27 |
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
27 |
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(t |
2 |
2)sin t 2t cost; |
||
|
|
|
ɉɪɢɦɟɪ |
|
|
2.9. ȼɵɱɢɫɥɢɬɶ |
ɞɥɢɧɭ |
ɞɭɝɢ |
ɤɪɢɜɨɣ |
|
|||||||||||||||||||||||||||||||||
|
|
|
|
|
®°x |
|
|
||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
° |
|
(2 t |
2 |
)cost 2t sin t, |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
¯y |
|
|
||||
ɟɫɥɢ t ɢɡɦɟɧɹɟɬɫɹ ɨɬ t1=0 ɞɨ t2=S.
Ɋɟɲɟɧɢɟ. Ⱦɢɮɮɟɪɟɧɰɢɪɭɹ ɩɨ t, ɩɨɥɭɱɚɟɦ
32
xtc |
2t sin t (t 2 2)cost 2cost 2t sin t |
t 2 cost, |
||||||||
ytc |
2t cost (2 t 2 )sin t 2sin t 2t cost |
t 2 sin t, |
||||||||
ɨɬɤɭɞɚ |
(x c)2 (yc)2 |
t4 cos2 t t4 sin 2 t |
t4 (cos2 t sin 2 t) t2 . |
|||||||
|
t |
t |
|
|
|
|
|
|
|
|
|
|
S |
|
t |
3 |
|
S |
S |
3 |
|
|
|
|
|
|
||||||
ɋɥɟɞɨɜɚɬɟɥɶɧɨ, l |
³t2dt |
|
|
|
|
. |
|
|||
|
|
|
|
|
|
|
||||
|
|
0 |
3 |
|
0 |
3 |
|
|||
ɉɪɢɦɟɪ 2.10. ɇɚɣɬɢ ɞɥɢɧɭ ɞɭɝɢ ɤɚɪɞɢɨɢɞɵ U=a(1+cosM ), (a>0, 0dMd2S) (ɪɢɫ. 2.6).
Ɋɟɲɟɧɢɟ. ɁɞɟɫɶUc |
|
asin M, |
(Uc )2 U2 |
2a2 (1 cosM) |
|
|||||||||||
|
|
|
|
|
M |
|
|
|
|
|
|
M |
|
|
|
|
4a |
2 |
cos |
2 |
M |
2a |
|
cos |
M |
|
. ȼ ɫɢɥɭ ɫɢɦɦɟɬɪɢɢ l |
S |
M |
dM 8a. |
|||
|
|
|||||||||||||||
|
|
2 |
|
2 |
|
2 2a³cos |
2 |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|||
|
|
|
|
|
|
|
|
|
|
M |
S |
|
S |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
2 |
M |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
MS
O |
2 |
M 0 |
Ɉ |
|
|
|
|
M32S
Ɋɢɫ. 2.6
Ɂɚɦɟɱɚɧɢɟ. ɉɨɫɬɪɨɟɧɢɟ ɥɢɧɢɢ ɜɟɞɟɬɫɹ ɜ ɩɨɥɹɪɧɨɣ ɫɢɫɬɟɦɟ ɤɨɨɪɞɢɧɚɬ ɩɨ ɬɨɱɤɚɦ, ɤɨɬɨɪɵɟ ɜ ɞɨɫɬɚɬɨɱɧɨɦ ɤɨɥɢɱɟɫɬɜɟ ɡɚɩɢɫɵɜɚɸɬɫɹ ɜ ɜɢɞɟ ɬɚɛɥɢɰɵ ɢɯ ɤɨɨɪɞɢɧɚɬ.
ɉɪɢɦɟɪ 2.11. ɇɚɣɬɢ ɨɛɴɟɦ ɬɟɥɚ, ɨɛɪɚɡɨɜɚɧɧɨɝɨ ɜɪɚɳɟɧɢɟɦ ɜɨɤɪɭɝ ɨɫɢ Ox
ɮɢɝɭɪɵ, ɨɝɪɚɧɢɱɟɧɧɨɣ ɥɢɧɢɹɦɢ 2y x2 ɢ 2x 2y 3 0 (ɪɢɫ. 2.7).
33
Ɋɟɲɟɧɢɟ. ɇɚɣɞɟɦ ɚɛɫɰɢɫɫɵ ɬɨɱɟɤ ɩɟɪɟɫɟɱɟɧɢɹ ɤɪɢɜɵɯ
y |
x2 |
ȹ y |
3 2x 3 x : |
x2 |
|
|
3 x; x2 2x 3 0; x 3, x |
2 |
1. |
|||||||||||||
|
|
|
||||||||||||||||||||
|
2 |
|
2 |
2 |
2 |
2 |
|
|
|
|
1 |
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 y |
x2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
Ⱥ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2x 2 y 3 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ȼ |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-3 |
|
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
x |
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɋɢɫ. 2.7
ɂɫɤɨɦɵɣ ɨɛɴɟɦ ɟɫɬɶ ɪɚɡɧɨɫɬɶ ɞɜɭɯ ɨɛɴɟɦɨɜ: ɨɛɴɟɦɚ V1 ɬɟɥɚ, ɩɨɥɭɱɟɧɧɨɝɨ
ɜɪɚɳɟɧɢɟɦ ɤɪɢɜɨɥɢɧɟɣɧɨɣ ɬɪɚɩɟɰɢɢ, ɨɝɪɚɧɢɱɟɧɧɨɣ ɩɪɹɦɨɣ y |
3 |
x ( 3 d x d1), |
|
2 |
|||
|
|
ɢɨɛɴɟɦɚ V2 ɬɟɥɚ, ɩɨɥɭɱɟɧɧɨɝɨ ɜɪɚɳɟɧɢɟɦ ɤɪɢɜɨɥɢɧɟɣɧɨɣ ɬɪɚɩɟɰɢɢ,
|
|
|
|
|
|
|
|
|
|
|
|
x |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b |
|
ɨɝɪɚɧɢɱɟɧɧɨɣ ɩɚɪɚɛɨɥɨɣ y |
|
|
|
( 3 d x d1) . ɂɫɩɨɥɶɡɭɹ ɮɨɪɦɭɥɭ V |
S³ f 2 (x)dx , |
|||||||||||||||||||||||||||
|
|
|
2 |
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a |
||
ɢɦɟɟɦ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
§ |
|
3 |
|
· |
2 |
|
1 |
|
§ x2 |
· |
2 |
|
1 |
§3 |
·2 |
§ |
3 |
|
· |
|
|||||||
Vx |
V1 V2 |
S ³ |
¨ |
|
|
x¸ dx S ³ |
¨ |
|
¸ |
dx |
S ³ |
¨ |
|
x¸ |
d¨ |
|
x¸ |
|
||||||||||||||
2 |
|
|
2 |
|||||||||||||||||||||||||||||
|
|
|
|
|
|
© |
|
|
¹ |
|
|
|
|
|
© 2 |
¹ |
|
|
|
©2 |
¹ |
© |
|
¹ |
|
|||||||
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
3 |
|
|
|
|
|
|
|
||||||
|
|
|
|
§ 3 |
|
|
·3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
1 |
x4 |
|
|
¨ |
|
|
|
x ¸ |
|
|
|
|
1 |
|
x5 |
|
1 |
|
272 |
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
©2 |
|
|
¹ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
S³ |
|
dx |
S |
|
|
|
|
|
|
|
|
|
|
|
S |
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
3 |
|
|
|
3 |
20 |
|
3 |
15 |
|
|
|
|
|
|
|
|
|
||||||||||
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
34
2.3. ɇɟɫɨɛɫɬɜɟɧɧɵɟ ɢɧɬɟɝɪɚɥɵ
2.3.1.ɂɧɬɟɝɪɚɥɵ ɫ ɛɟɫɤɨɧɟɱɧɵɦɢ ɩɪɟɞɟɥɚɦɢ (ɧɟɫɨɛɫɬɜɟɧɧɵɟ ɢɧɬɟɝɪɚɥɵ ɩɟɪɜɨɝɨ ɪɨɞɚ)
ȿɫɥɢ ɮɭɧɤɰɢɹ |
f (x) ɧɟɩɪɟɪɵɜɧɚ ɩɪɢ a d x f, ɬɨ |
ɧɟɫɨɛɫɬɜɟɧɧɵɦ |
|
ɢɧɬɟɝɪɚɥɨɦ ɩɟɪɜɨɝɨ ɪɨɞɚ ɧɚɡɵɜɚɟɬɫɹ ɫɥɟɞɭɸɳɢɣ ɩɪɟɞɟɥ: |
|
||
f |
|
b |
|
³ |
f (x)dx lim |
³ f ( x)dx . |
(2.1) |
a |
bo f |
a |
|
|
|
||
ȿɫɥɢ ɫɭɳɟɫɬɜɭɟɬ ɤɨɧɟɱɧɵɣ ɩɪɟɞɟɥ ɜ ɩɪɚɜɨɣ ɱɚɫɬɢ ɮɨɪɦɭɥɵ (2.1), ɬɨ ɧɟɫɨɛɫɬɜɟɧɧɵɣ ɢɧɬɟɝɪɚɥ ɧɚɡɵɜɚɟɬɫɹ ɫɯɨɞɹɳɢɦɫɹ; ɟɫɥɢ ɠɟ ɷɬɨɬ ɩɪɟɞɟɥ ɧɟ ɫɭɳɟɫɬɜɭɟɬ ɢɥɢ ɪɚɜɟɧ f, ɬɨ ɪɚɫɯɨɞɹɳɢɦɫɹ.
Ⱥɧɚɥɨɝɢɱɧɨ ɨɩɪɟɞɟɥɹɸɬɫɹ ɧɟɫɨɛɫɬɜɟɧɧɵɟ ɢɧɬɟɝɪɚɥɵ
|
|
b |
|
lim |
b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
³ f (x)dx |
|
³ f (x)dx , |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
f |
ao f |
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
f |
|
|
|
|
c |
|
|
|
|
|
b |
|
|
|
|
|
|
|
|
||
|
|
³ f ( x)dx |
|
lim |
|
³ f (x)dx lim |
³ f ( x)dx . |
|
|
|
|
|
|||||||||||
|
|
f |
|
ao f |
a |
|
|
bo f |
c |
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
f |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɉɪɢɦɟɪ 2.12. ȼɵɱɢɫɥɢɬɶ |
|
³e 3x dx . |
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɋɟɲɟɧɢɟ. ɂɦɟɟɦ: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
f |
3x |
|
b |
3x |
|
|
|
§ |
|
1 |
|
3x |
|
ɜ |
· |
1 |
|
|
3b |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
³e |
dx lim |
³e |
dx |
¨ |
|
|
e |
|
|
¸ |
|
lim (1 |
e |
) |
|
. |
|||||||
|
|
lim ¨ |
|
|
|
|
|
¸ |
|
|
|
||||||||||||
0 |
|
bo f |
0 |
|
|
|
|
bo f© |
|
3 |
|
|
|
|
0 |
¹ |
3 bo f |
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
f |
|
dx |
|
|
|
||||
ɉɪɢɦɟɪ 2.13. ȼɵɱɢɫɥɢɬɶ ³ |
|
|
|
. |
|
|
|||||
|
|
2 |
|
|
|
|
|
||||
|
|
f x |
|
2x 5 |
|
|
|
||||
Ɋɟɲɟɧɢɟ. |
f (x) |
1 |
|
|
|
|
1 |
|
|
– ɧɟɩɪɟɪɵɜɧɚɹ ɮɭɧɤɰɢɹ |
|
x2 2x |
5 (x 1)2 |
|
|||||||||
|
|
4 |
|||||||||
ɧɚ (f;f) ;
35
f |
|
|
|
|
dx |
|
|
|
|
0 |
|
|
|
|
|
dx |
|
|
f |
|
|
|
dx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
³ |
|
|
|
|
|
|
|
|
³ |
|
|
|
|
|
|
³ |
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
2 |
2x 5 |
|
|
2 |
2x 5 |
|
x |
2 |
2x 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
f x |
|
|
f x |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
0 |
|
|
|
|
dx |
|
|
|
|
|
|
|
|
|
0 |
|
|
dx |
|
|
|
|
|
|
|
|
§ |
1 |
|
|
|
1 |
|
|
1 |
|
|
a 1· |
1 |
|
|
1 |
|
|
S |
|
|||||||
³ |
|
|
|
|
|
|
|
|
|
|
lim |
|
|
³ |
|
|
|
|
|
|
|
|
lim |
¨ |
|
arctg |
|
|
|
|
|
|
arctg |
|
|
¸ |
|
|
|
arctg |
|
|
|
|
. |
||||||||
|
|
|
2 2x 5 |
|
|
|
|
|
4 (x 1)2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
f x |
|
ao fa |
|
ao f© |
2 |
|
|
|
2 |
|
|
2 |
|
|
2 ¹ |
2 |
|
|
2 |
|
|
4 |
|
||||||||||||||||||||||||||||||
f |
|
|
|
|
dx |
|
|
|
|
|
|
b |
|
|
|
|
dx |
|
|
|
|
|
|
§ |
1 |
|
|
|
|
b 1 |
|
1 |
|
|
|
1 · |
S |
|
|
1 |
|
|
1 |
|
|
|
|||||||
³ |
|
|
|
|
|
|
|
blimo f ³ |
|
|
|
|
|
blimo f |
arctg |
|
|
|
arctg |
|
|
arctg |
. |
|
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
¨ |
|
|
|
|
|
|
|
|
|
|
¸ |
|
|
|
|
|
|
|
|||||||||||||||||||||
x |
2 |
2x |
5 |
|
|
4 |
(x 1) |
2 |
2 |
2 |
|
|
2 |
|
|
|
4 |
2 |
2 |
|
|
||||||||||||||||||||||||||||||||
0 |
|
|
|
|
|
|
0 |
|
|
|
|
|
|
© |
|
|
|
|
|
|
|
|
|
2 ¹ |
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
f |
|
|
|
dx |
|
|
|
S |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
Ɍɨɝɞɚ ³ |
|
|
|
|
|
|
. ɂɧɬɟɝɪɚɥ ɫɯɨɞɢɬɫɹ. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
x |
2 |
2x 5 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||
|
|
|
|
|
|
|
f |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
2.3.2. ɂɧɬɟɝɪɚɥɵ ɨɬ ɧɟɨɝɪɚɧɢɱɟɧɧɵɯ ɮɭɧɤɰɢɣ (ɧɟɫɨɛɫɬɜɟɧɧɵɟ ɢɧɬɟɝɪɚɥɵ ɜɬɨɪɨɝɨ ɪɨɞɚ)
ȿɫɥɢ |
f (x) ɧɟɩɪɟɪɵɜɧɚ ɩɪɢ a<x<b ɢ ɜ ɬɨɱɤɟ x=b ɧɟɨɝɪɚɧɢɱɟɧɚ, ɬɨ |
||
ɧɟɫɨɛɫɬɜɟɧɧɵɦ ɢɧɬɟɝɪɚɥɨɦ ɜɬɨɪɨɝɨ ɪɨɞɚ ɧɚɡɵɜɚɟɬɫɹ |
|
||
b |
|
b H |
|
³ f (x)dx lim |
³ f (x)dx . |
(2.2) |
|
a |
Ho 0 |
a |
|
|
|
||
ȿɫɥɢ |
ɫɭɳɟɫɬɜɭɟɬ ɤɨɧɟɱɧɵɣ ɩɪɟɞɟɥ ɜ ɩɪɚɜɨɣ |
ɱɚɫɬɢ ɮɨɪɦɭɥɵ (2.2), ɬɨ |
|
ɧɟɫɨɛɫɬɜɟɧɧɵɣ ɢɧɬɟɝɪɚɥ ɧɚɡɵɜɚɟɬɫɹ ɫɯɨɞɹɳɢɦɫɹ; ɟɫɥɢ ɠɟ ɷɬɨɬ ɩɪɟɞɟɥ ɧɟ ɫɭɳɟɫɬɜɭɟɬ ɢɥɢ ɪɚɜɟɧ f, ɬɨ ɪɚɫɯɨɞɹɳɢɦɫɹ.
Ⱥɧɚɥɨɝɢɱɧɨ ɨɩɪɟɞɟɥɹɟɬɫɹ ɢɧɬɟɝɪɚɥ ɢ ɜ ɫɥɭɱɚɟ f (a) rf.
b |
|
b |
|
|
|
|
|
³ f ( x)dx |
lim |
³ f (x)dx . |
|
|
(2.3) |
||
a |
Ho 0 |
a H |
|
|
|
|
|
|
|
|
|
|
|||
ȼ ɫɥɭɱɚɟ, ɤɨɝɞɚ f(c)= rf, c (a,b), ɬɨ |
|
|
|
||||
b |
|
c H |
b |
|
|
|
|
³ f (x)dx |
lim |
³ |
f ( x)dx lim |
³ f (x)dx . |
|
|
|
a |
Ho 0 |
a |
Go 0 |
c G |
|
|
|
|
|
|
|
|
|||
|
|
|
|
1 |
dx |
||
ɉɪɢɦɟɪ 2.14. ȼɵɱɢɫɥɢɬɶ ɢɥɢ ɭɫɬɚɧɨɜɢɬɶ ɪɚɫɯɨɞɢɦɨɫɬɶ ³ |
|
|
. |
||||
|
2 |
||||||
|
|
|
|
0 x |
|
|
|
36
|
|
Ɋɟɲɟɧɢɟ. |
|
f (x) |
|
|
|
1 |
– |
ɧɟɩɪɟɪɵɜɧɚ ɧɚ |
(0,1], lim |
f (x) lim |
1 |
f. |
|||||||||||||
|
|
|
|
|
|
x2 |
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xo 0 |
xo 0 x2 |
|
|||
ɋɥɟɞɨɜɚɬɟɥɶɧɨ, |
|
|
|
1 |
dx |
|
|
– |
|
ɧɟɫɨɛɫɬɜɟɧɧɵɣ |
ɢɧɬɟɝɪɚɥ |
ɜɬɨɪɨɝɨ |
ɪɨɞɚ. |
||||||||||||||
|
|
|
³ |
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
2 |
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
0 x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 dx |
|
1 |
|
1 |
1 |
|
1 |
|
1 dx |
|
§ |
|
1 |
· |
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
lim |
¨ |
1 |
|
¸ |
f, ɩɨɷɬɨɦɭ, ɢɧɬɟɝɪɚɥ ɪɚɫɯɨɞɢɬɫɹ. |
||||||||
³H x2 |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
x |
|
H |
|
|
|
H |
|
0³ x2 |
H o 0© |
|
H |
¹ |
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
3.ɎɍɇɄɐɂɂ ɇȿɋɄɈɅɖɄɂɏ ɉȿɊȿɆȿɇɇɕɏ
3.1.ɉɨɧɹɬɢɟ ɮɭɧɤɰɢɢ ɧɟɫɤɨɥɶɤɢɯ ɩɟɪɟɦɟɧɧɵɯ
ɉɭɫɬɶ D – ɩɪɨɢɡɜɨɥɶɧɨɟ ɦɧɨɠɟɫɬɜɨ ɬɨɱɟɤ n–ɦɟɪɧɨɝɨ ɚɪɢɮɦɟɬɢɱɟɫɤɨɝɨ ɩɪɨɫɬɪɚɧɫɬɜɚ. ȿɫɥɢ ɤɚɠɞɨɣ ɬɨɱɤɟ P(x1,x2,...,xn) D ɩɨɫɬɚɜɥɟɧɨ ɜ ɫɨɨɬɜɟɬɫɬɜɢɟ ɧɟɤɨɬɨɪɨɟ ɞɟɣɫɬɜɢɬɟɥɶɧɨɟ ɱɢɫɥɨ f(P)=f(x1,x2,...xn), ɬɨ ɝɨɜɨɪɹɬ, ɱɬɨ ɧɚ ɦɧɨɠɟɫɬɜɟ D ɡɚɞɚɧɚ ɱɢɫɥɨɜɚɹ ɮɭɧɤɰɢɹ f ɨɬ n ɩɟɪɟɦɟɧɧɵɯ x1,x2,...xn. Ɇɧɨɠɟɫɬɜɨ D ɧɚɡɵɜɚɟɬɫɹ ɨɛɥɚɫɬɶɸ ɨɩɪɟɞɟɥɟɧɢɹ, ɚ ɦɧɨɠɟɫɬɜɨ E={u R|u=f(P), P D} – ɨɛɥɚɫɬɶɸ ɡɧɚɱɟɧɢɣ ɮɭɧɤɰɢɢ u=f(P).
ȼ ɱɚɫɬɧɨɦ ɫɥɭɱɚɟ, ɤɨɝɞɚ n=2, ɮɭɧɤɰɢɸ ɞɜɭɯ ɩɟɪɟɦɟɧɧɵɯ z=f(x,y) ɦɨɠɧɨ ɢɡɨɛɪɚɡɢɬɶ ɝɪɚɮɢɱɟɫɤɢ. Ⱦɥɹ ɷɬɨɝɨ ɜ ɤɚɠɞɨɣ ɬɨɱɤɟ (x,y) D ɜɵɱɢɫɥɹɟɬɫɹ ɡɧɚɱɟɧɢɟ ɮɭɧɤɰɢɢ z=f(x,y). Ɍɨɝɞɚ ɬɪɨɣɤɚ ɱɢɫɟɥ (x,y,z)=(x,y,f(x,y)) ɨɩɪɟɞɟɥɹɟɬ ɜ ɫɢɫɬɟɦɟ ɤɨɨɪɞɢɧɚɬ Oxyz ɧɟɤɨɬɨɪɭɸ ɬɨɱɤɭ P. ɋɨɜɨɤɭɩɧɨɫɬɶ ɬɨɱɟɤ P(x,y,f(x,y)) ɨɛɪɚɡɭɟɬ ɝɪɚɮɢɤ ɮɭɧɤɰɢɢ z=f(x,y), ɩɪɟɞɫɬɚɜɥɹɸɳɢɣ ɫɨɛɨɣ ɧɟɤɨɬɨɪɭɸ ɩɨɜɟɪɯɧɨɫɬɶ ɜ ɩɪɨɫɬɪɚɧɫɬɜɟ R3.
3.2. ɉɪɟɞɟɥ ɢ ɧɟɩɪɟɪɵɜɧɨɫɬɶ ɮɭɧɤɰɢɢ ɧɟɫɤɨɥɶɤɢɯ ɩɟɪɟɦɟɧɧɵɯ
ɑɢɫɥɨ |
Ⱥ |
ɧɚɡɵɜɚɟɬɫɹ ɩɪɟɞɟɥɨɦ ɮɭɧɤɰɢɢ u=f(P) ɩɪɢ ɫɬɪɟɦɥɟɧɢɢ ɬɨɱɤɢ |
|||||
P(x1,x2,...,xn) |
ɤ |
ɬɨɱɤɟ P0(a1,a2,...,an), ɟɫɥɢ ɞɥɹ ɥɸɛɨɝɨ H>0 ɫɭɳɟɫɬɜɭɟɬ ɬɚɤɨɟ |
|||||
G>0, ɱɬɨ |
ɢɡ |
ɭɫɥɨɜɢɹ 0 U(P , P ) |
( x a )2 ... ( x |
n |
a |
n |
)2 G ɫɥɟɞɭɟɬ |
|
|
1 0 |
1 1 |
|
|
||
| f ( x1 , x 2 ,..., x n ) A | H . ɉɪɢ ɷɬɨɦ ɩɢɲɭɬ:
37
|
A lim |
f ( p) lim f (x1 , x2 ,..., xn ) . |
|
PoP |
x oa |
|
0 |
x21 oa21 |
|
|
... |
|
|
xn oan |
|
Ɏɭɧɤɰɢɹ u=f(P) ɧɚɡɵɜɚɟɬɫɹ ɧɟɩɪɟɪɵɜɧɨɣ ɜ ɬɨɱɤɟ P0 , ɟɫɥɢ: |
|
1) |
ɮɭɧɤɰɢɹ f(P) ɨɩɪɟɞɟɥɟɧɚ ɜ ɬɨɱɤɟ P0 ; |
|
2) |
ɫɭɳɟɫɬɜɭɟɬ |
lim f (P) ; |
|
|
PoP0 |
3) |
lim f (P) |
f (P0 ) . |
|
PoP0 |
|
Ɏɭɧɤɰɢɹ ɧɚɡɵɜɚɟɬɫɹ ɧɟɩɪɟɪɵɜɧɨɣ ɜ ɨɛɥɚɫɬɢ, ɟɫɥɢ ɨɧɚ ɧɟɩɪɟɪɵɜɧɚ ɜ ɤɚɠɞɨɣ ɬɨɱɤɟ ɷɬɨɣ ɨɛɥɚɫɬɢ. ȿɫɥɢ f(P) ɨɩɪɟɞɟɥɟɧɚ ɜ ɧɟɤɨɬɨɪɨɣ ɨɤɪɟɫɬɧɨɫɬɢ ɬɨɱɤɢ P0 ɢ ɯɨɬɹ ɛɵ ɨɞɧɨ ɢɡ ɭɫɥɨɜɢɣ 1)–3) ɧɚɪɭɲɟɧɨ, ɬɨ ɬɨɱɤɚ P0 ɧɚɡɵɜɚɟɬɫɹ ɬɨɱɤɨɣ ɪɚɡɪɵɜɚ ɮɭɧɤɰɢɢ f(P). Ɍɨɱɤɢ ɪɚɡɪɵɜɚ ɦɨɝɭɬ ɛɵɬɶ ɢɡɨɥɢɪɨɜɚɧɧɵɦɢ, ɨɛɪɚɡɨɜɵɜɚɬɶ ɥɢɧɢɢ ɪɚɡɪɵɜɚ, ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɪɵɜɚ ɢ ɬ. ɞ.
3.3. Ⱦɢɮɮɟɪɟɧɰɢɪɨɜɚɧɢɟ ɮɭɧɤɰɢɣ ɧɟɫɤɨɥɶɤɢɯ ɩɟɪɟɦɟɧɧɵɯ
3.3.1. ɑɚɫɬɧɨɟ ɢ ɩɨɥɧɨɟ ɩɪɢɪɚɳɟɧɢɹ ɮɭɧɤɰɢɢ
ɉɭɫɬɶ z=f(x,y) – ɮɭɧɤɰɢɹ ɞɜɭɯ ɧɟɡɚɜɢɫɢɦɵɯ ɩɟɪɟɦɟɧɧɵɯ ɢ D(f) – ɨɛɥɚɫɬɶ ɟɟ
ɨɩɪɟɞɟɥɟɧɢɹ. |
ȼɵɛɟɪɟɦ ɩɪɨɢɡɜɨɥɶɧɭɸ |
ɬɨɱɤɭ P0 x0 , y0 D( f ) ɢ ɞɚɞɢɦ x0 |
ɩɪɢɪɚɳɟɧɢɟ |
'x , ɨɫɬɚɜɥɹɹ ɡɧɚɱɟɧɢɟ y0 |
ɧɟɢɡɦɟɧɧɵɦ. ɉɪɢ ɷɬɨɦ ɮɭɧɤɰɢɹ f(x,y) |
ɩɨɥɭɱɢɬ ɩɪɢɪɚɳɟɧɢɟ: |
|
|
|
'x z 'x f (x0 , y0 ) |
f ( x0 'x, y0 ) f ( x0 , y0 ). |
ɗɬɚ ɜɟɥɢɱɢɧɚ ɧɚɡɵɜɚɟɬɫɹ ɱɚɫɬɧɵɦ ɩɪɢɪɚɳɟɧɢɟɦ ɮɭɧɤɰɢɢ f(x,y) ɩɨ x.
Ⱥɧɚɥɨɝɢɱɧɨ, ɫɱɢɬɚɹ x0 ɩɨɫɬɨɹɧɧɨɣ ɢ ɞɚɜɚɹ y0 ɩɪɢɪɚɳɟɧɢɟ 'y ,
ɩɨɥɭɱɢɦ ɱɚɫɬɧɨɟ ɩɪɢɪɚɳɟɧɢɟ ɮɭɧɤɰɢɢ z=f(x,y) ɩɨ y:
'y z 'y f (x0 , y0 ) f (x0 , y0 'y) f (x0 , y0 ).
38
ɉɨɥɧɵɦ ɩɪɢɪɚɳɟɧɢɟɦ ɮɭɧɤɰɢɢ z f (x, y) ɜ ɬɨɱɤɟ P0 (x0 , y0 ) ɧɚɡɵɜɚɟɬɫɹ ɩɪɢɪɚɳɟɧɢɟ 'z , ɜɵɡɵɜɚɟɦɨɟ ɨɞɧɨɜɪɟɦɟɧɧɵɦ ɩɪɢɪɚɳɟɧɢɟɦ ɨɛɟɢɯ ɧɟɡɚɜɢɫɢɦɵɯ ɩɟɪɟɦɟɧɧɵɯ x ɢ y:
'z 'f ( x0 , y0 ) f (x0 'x, y0 'y) f (x0 , y0 ) .
Ƚɟɨɦɟɬɪɢɱɟɫɤɢ ɱɚɫɬɧɵɟ ɩɪɢɪɚɳɟɧɢɹ ɢ ɩɨɥɧɨɟ ɩɪɢɪɚɳɟɧɢɟ ɮɭɧɤɰɢɢ z('x z, 'y z, 'z) ɦɨɠɧɨ ɢɡɨɛɪɚɡɢɬɶ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɨɬɪɟɡɤɚɦɢ A1B1,A2 B2 ɢ A3 B3
(ɪɢɫ. 3.1).
z
'x z
'z
'y z
|
y |
Ɋ1(x0 'x, y0 ) |
Ɋ3 (x0 'x, y0 'y) |
|
|
x |
|
Ɋ0 (x0 , y0 ) |
Ɋ2 (x0 , y0 'y) |
|
|
|
Ɋɢɫ. 3.1 |
|
|
ɉɪɢɦɟɪ 3.1. ɇɚɣɬɢ ɱɚɫɬɧɵɟ ɢ ɩɨɥɧɨɟ ɩɪɢɪɚɳɟɧɢɹ ɮɭɧɤɰɢɢ z xy2 ɜ ɬɨɱɤɟ |
|||
P0 (1;2) , ɟɫɥɢ 'x |
0,1; 'y |
0,2 . |
|
|
|
Ɋɟɲɟɧɢɟ. ȼɵɱɢɫɥɢɦ ɡɧɚɱɟɧɢɹ |
|
||
'x z |
f (1,1;2,0) f ( 1;2) |
(x0 'x) y02 x0 y02 |
'xy02 0,1 4 0,4; |
|
'y z |
f (1,0;2,2) f (1;2) |
x0 ( y0 'y)2 x0 y02 |
2x0 y0'y 'y2 |
|
2 1 2 0,22 0,84; |
|
|
||
'z |
f (1,1;2,2) f (1;2) (x0 'x)( y0 'y)2 x0 y02 |
|||
1,1 2,22 1 22 |
1,324. |
|
|
|
|
|
|
|
39 |
ȿɫɥɢ |
u f (x, y, z) , ɬɨ ɞɥɹ ɧɟɟ ɪɚɫɫɦɚɬɪɢɜɚɸɬɫɹ ɱɚɫɬɧɵɟ ɩɪɢɪɚɳɟɧɢɹ |
'xu, 'yu, |
'zu ɢ ɩɨɥɧɨɟ ɩɪɢɪɚɳɟɧɢɟ 'u . |
|
3.3.2. ɑɚɫɬɧɵɟ ɩɪɨɢɡɜɨɞɧɵɟ |
Ɉɩɪɟɞɟɥɟɧɢɟ. ɑɚɫɬɧɨɣ ɩɪɨɢɡɜɨɞɧɨɣ ɮɭɧɤɰɢɢ z=f(x,y) ɩɨ ɩɟɪɟɦɟɧɧɨɣ x ɧɚɡɵɜɚɟɬɫɹ ɩɪɟɞɟɥ ɨɬɧɨɲɟɧɢɹ ɱɚɫɬɧɨɝɨ ɩɪɢɪɚɳɟɧɢɹ ɮɭɧɤɰɢɢ 'x z ɤ ɩɪɢɪɚɳɟɧɢɸ
ɚɪɝɭɦɟɧɬɚ 'x , ɤɨɝɞɚ ɩɨɫɥɟɞɧɟɟ ɫɬɪɟɦɢɬɫɹ ɤ ɧɭɥɸ: |
|
||||||||||
|
lim |
|
f (x0 'x, y0 ) f (x0 , y0 ) |
. |
|
||||||
|
|
|
|
||||||||
|
'xo0 |
|
|
|
|
'x |
|
||||
ɑɚɫɬɧɭɸ ɩɪɨɢɡɜɨɞɧɭɸ ɮɭɧɤɰɢɢ |
z |
f (x, y) ɩɨ ɩɟɪɟɦɟɧɧɨɣ x ɨɛɨɡɧɚɱɚɸɬ |
|||||||||
ɫɢɦɜɨɥɚɦɢ |
|
|
|
|
|
|
|
|
|
|
|
|
|
wz |
; zcx ; |
wf (x, y) |
; f xc(x, y). |
|
|||||
|
|
wx |
|
|
|
wx |
|
|
|
||
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, |
|
|
|
|
|
|
|
|
|
|
|
wz |
lim |
' |
x |
z |
lim |
f (x0 |
'x, y0 ) f (x0, y0 ) |
. |
|||
wx |
'x |
|
|
'x |
|||||||
'xo0 |
|
'xo0 |
|
|
|||||||
Ɉɩɪɟɞɟɥɟɧɢɟ. ɑɚɫɬɧɨɣ ɩɪɨɢɡɜɨɞɧɨɣ ɮɭɧɤɰɢɢ z=f(x,y) ɩɨ ɩɟɪɟɦɟɧɧɨɣ y ɧɚɡɵɜɚɟɬɫɹ ɩɪɟɞɟɥ ɨɬɧɨɲɟɧɢɹ ɱɚɫɬɧɨɝɨ ɩɪɢɪɚɳɟɧɢɹ ɮɭɧɤɰɢɢ 'y z ɤ ɩɪɢɪɚɳɟɧɢɸ ɚɪɝɭɦɟɧɬɚ 'y , ɤɨɝɞɚ ɩɨɫɥɟɞɧɟɟ ɫɬɪɟɦɢɬɫɹ ɤ ɧɭɥɸ:
wz |
lim |
'y z |
lim |
f ( x0 , y0 |
'y) f (x0, y0 ) |
. |
wy |
'y |
|
'y |
|||
'yo0 |
'yo0 |
|
|
ɉɪɢɦɟɧɹɸɬɫɹ ɬɚɤɠɟ ɨɛɨɡɧɚɱɟɧɢɹ zcy , wf (x, y) , f yc(x, y) . wy
ɑɚɫɬɧɵɟ ɩɪɢɪɚɳɟɧɢɹ ɢ ɱɚɫɬɧɵɟ ɩɪɨɢɡɜɨɞɧɵɟ ɮɭɧɤɰɢɢ n ɩɟɪɟɦɟɧɧɵɯ ɩɪɢ n>2 ɨɩɪɟɞɟɥɹɸɬɫɹ ɢ ɨɛɨɡɧɚɱɚɸɬɫɹ ɚɧɚɥɨɝɢɱɧɨ. Ɍɚɤ, ɧɚɩɪɢɦɟɪ, ɩɭɫɬɶ ɬɨɱɤɚ(x1, x2 ,..., xk ,..., xn ) – ɩɪɨɢɡɜɨɥɶɧɚɹ ɮɢɤɫɢɪɨɜɚɧɧɚɹ ɬɨɱɤɚ ɢɡ ɨɛɥɚɫɬɢ
40
