- •ПЕРЕЧЕНЬ МАТЕРИАЛОВ
- •ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
- •1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
- •1.1 Функции многих переменных
- •1.1.1 Основные понятия и определения
- •1.1.2 Предел функции
- •1.1.3 Непрерывность функции
- •1.2 Частные производные функции нескольких переменных. Дифференциал функции
- •1.2.1 Частные производные функции нескольких переменных
- •1.2.2 Дифференцируемость функции двух переменных
- •1.2.3 Дифференциал функции нескольких переменных
- •1.2.4 Применение дифференциалов в приближенных вычислениях
- •1.3 Дифференцирование неявных и сложных функций. Приложения частных производных
- •1.3.1 Дифференцирование неявных и сложных функций. Приложения частных производных
- •1.3.2 Касательная плоскость и нормаль к поверхности
- •1.3.3 Вектор-градиент. Производная функции по направлению вектора
- •1.4 Частные производные и дифференциалы высших порядков. Формула Тейлора
- •1.4.1 Частные производные высших порядков
- •1.4.2 Дифференциалы высших порядков функции нескольких переменных
- •1.4.3 Формула Тейлора для функции нескольких переменных
- •1.5 Исследование функции на экстремум. Условный экстремум. Наибольшее и наименьшее значение функции в замкнутой области
- •1.5.1 Локальные экстремумы функций нескольких переменных
- •1.5.2 Условный экстремум
- •1.5.3 Наибольшее и наименьшее значение функции в замкнутой области
- •1.6 Метод наименьших квадратов
- •2 НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
- •2.1 Основные понятия
- •2.2 Основные свойства неопределенного интеграла
- •2.3 Замена переменной в неопределенном интеграле
- •2.4 Формула интегрирования по частям в неопределенном интеграле
- •2.5.1 Основные понятия. Разложение рациональных дробей в сумму простейших дробей
- •2.5.2 Правило отыскания коэффициентов
- •2.5.3 Интегрирование простейших рациональных дробей
- •2.6.1 Интегрирование тригонометрических функций
- •2.6.2 Интегрирование дробно-линейных иррациональностей
- •2.6.3 Биномиальный дифференциал и его интегрирование
- •2.6.4 Интегралы от квадратичных иррациональностей
- •2.6.5 Тригонометрические подстановки при интегрировании иррациональностей
- •2.6.6 Примеры на подстановки Чебышева
- •3 ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
- •3.1 Понятие определенного интеграла
- •3.2 Геометрический и физический смысл определенного интеграла
- •3.2.1 Площадь криволинейной трапеции
- •3.2.2 Работа переменной силы
- •3.3 Свойства определенного интеграла
- •3.4 Оценки интегралов. Формула среднего значения
- •3.5 Условия существования определенного интеграла
- •3.6 Определенный интеграл с переменным верхним пределом
- •3.7 Формула Ньютона-Лейбница
- •3.8 Замена переменной в определенном интеграле
- •3.9 Формула интегрирования по частям в определенном интеграле
- •3.10 Несобственные интегралы
- •3.10.2 Несобственный интеграл II рода (интеграл от разрывной функции)
- •3.11 Геометрические и механические приложения определенного интеграла
- •3.11.1 Вычисление площадей в прямоугольных координатах
- •3.11.2 Площадь криволинейного сектора в полярных координатах
- •3.11.3 Длина дуги кривой
- •3.11.5 Объем тела вращения
- •3.11.7 Вычисление работы с помощью определенного интеграла
- •3.11.8 Координаты центра масс
- •4.2 Основные свойства определенного интеграла по фигуре
- •4.3.1 Определение двойного интеграла. Геометрический и физический смысл
- •4.3.2 Основные свойства двойного интеграла
- •4.4 Тройной интеграл, его свойства. Геометрический и физический смысл тройного интеграла. Вычисление тройного интеграла в декартовой системе координат
- •4.4.2 Вычисление тройного интеграла в декартовой системе координат
- •4.5 Замена переменных в кратных интегралах
- •4.5.1 Замена переменных в двойном интеграле
- •4.6 Приложение кратных интегралов
- •4.6.1 Приложение двойного интеграла
- •4.6.2 Приложение тройного интеграла
- •4.7 Криволинейные интегралы I рода
- •4.7.1 Определение криволинейного интеграла I рода
- •4.7.2 Основные свойства КРИ-I
- •4.7.3 Вычисление КРИ-I
- •4.8 Криволинейные интегралы II рода
- •4.8.1 Определение криволинейного интеграла II рода
- •4.8.2 Cвойства КРИ-II
- •4.8.3 Вычисление КРИ-II
- •4.8.4 Формула Грина
- •4.8.5 Условия независимости КРИ-II от пути интегрирования
- •4.8.6 Восстановление функции по ее полному дифференциалу
- •4.9 Приложения криволинейных интегралов
- •4.9.2 Приложения КРИ-II
- •4.10 Поверхностные интегралы I рода
- •4.10.1 Определение поверхностного интеграла I рода
- •4.10.2 Основные свойства поверхностного интеграла I рода
- •4.10.3 Вычисление поверхностного интеграла I рода
- •4.11 Поверхностные интегралы II рода
- •4.11.1 Ориентация поверхности
- •4.11.2 Нормаль к поверхности
- •4.11.3 Определение поверхностного интеграла II рода
- •4.11.4 Свойства поверхностного интеграла II рода
- •4.11.5 Вычисление поверхностного интеграла II рода
- •4.11.6 Формула Остроградского
- •4.11.7 Формула Стокса
- •4.12 Приложения интегралов по поверхности
- •4.12.1 Приложения поверхностных интегралов I рода
- •4.12.2 Приложения поверхностных интегралов II рода
- •5 ТЕОРИЯ ПОЛЯ
- •5.1 Скалярное поле и его характеристики
- •5.2 Векторное поле и его характеристики
- •5.3 Потенциальное векторное поле. Операторы Гамильтона и Лапласа
- •6 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
- •6.1 Общие понятия
- •6.2 Дифференциальные уравнения I порядка
- •6.3 Уравнения с разделяющимися переменными
- •6.4 Однородные уравнения
- •6.5 Линейные уравнения
- •6.5.1 Интегрирование линейного однородного уравнения
- •6.5.2 Интегрирование линейного неоднородного уравнения
- •6.6 Уравнение Бернулли
- •6.7 Дифференциальные уравнения в полных дифференциалах
- •6.8 Линейные однородные ДУ высших порядков. Определитель Вронского
- •6.9 Дифференциальные уравнения II порядка, допускающие понижение порядка
- •6.12 Метод вариации произвольных постоянных
- •6.13 Системы дифференциальных уравнений
- •6.14 Системы линейных дифференциальных уравнений
- •ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
- •НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
- •Занятие 7. Неопределенный интеграл. Метод непосредственного интегрирования
- •Занятие 12. Интегрирование тригонометрических выражений
- •Занятие 13. Интегрирование иррациональных выражений
- •ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
- •Занятие 14. Вычисление определенных интегралов
- •Занятие 15. Приложения определенных интегралов
- •ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
- •Занятие 17. Двойной интеграл. Его вычисление в декартовой системе координат
- •Занятие 19. Приложения двойного интеграла
- •Занятие 21. Замена переменных в тройном интеграле
- •Занятие 22. Приложения тройного интеграла
- •Занятие 23. Криволинейные интегралы I рода
- •Занятие 25. Приложения криволинейных интегралов
- •Занятие 26. Поверхностные интегралы I рода
- •Занятие 30. Поток векторного поля. Циркуляция. Потенциальное поле
- •ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
- •Занятие 31. Дифференциальные уравнения первого порядка. Уравнения с разделяющимися переменными и однородные
- •Занятие 32. Линейные дифференциальные уравнения первого порядка, уравнения Бернулли и в полных дифференциалах
- •Занятие 33. Дифференциальные уравнения высших порядков, допускающие понижения порядка
- •Занятие 34. Линейные однородные и неоднородные дифференциальные уравнения с постоянными коэффициентами. Метод Лагранжа
- •Занятие 35. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами с правой частью специального вида
- •ТИПОВОЙ РАСЧЕТ № 1 «ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ»
- •ТИПОВОЙ РАСЧЕТ № 2 НЕОПРЕДЕЛЕННЫЙ И ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛЫ
- •ТИПОВОЙ РАСЧЕТ № 3 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
- •ТИПОВОЙ РАСЧЕТ № 4 ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И СИСТЕМЫ ДУ
- •ТЕСТ «ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. ПРИЛОЖЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА»
- •КОНТРОЛЬНАЯ РАБОТА № 2
- •ПРОГРАММА ДИСЦИПЛИНЫ
- •ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ ДЛЯ СТУДЕНТОВ 1 КУРСА (2 СЕМЕСТР)
- •ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКИХ ПОСОБИЙ
Важно, что если dx и dy нельзя считать постоянными, то последняя формула уже не
будет верна. Например, при n = 2 имеем: |
|
|
|
|
|
|
|
|
|
|
||||
|
|
∂f (x; y) |
∂f (x; y) |
|
|
|
|
∂f (x; y) |
∂f (x; y) |
|
|
|
||
2 |
|
|
|
|
d |
2 |
x + d |
|
|
|
|
d |
2 |
y . |
|
|
|
|
|||||||||||
d u = d(du)= d |
∂x |
dx + |
∂x |
|
|
∂y |
dy + |
∂y |
|
|||||
|
|
|
|
|
|
|
|
|
|
|
||||
Сумма первого и третьего слагаемых даст нам выражение, ранее полученное для d 2u . Поэтому в итоге
d 2u = |
|
∂2 f (x; y) |
dx2 + 2 |
∂ |
2 f (x; y) |
dxdy + |
∂2 f (x; y) |
dy2 |
+ |
|
∂f (x; y) |
|
d 2x + |
∂f (x; y) |
d 2 y , |
|||||||||||||||||
|
|
∂x2 |
|
|
|
∂x∂y |
∂y2 |
|
|
|
∂x |
|
∂y |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
т.е. в данном общем случае выражение для d 2u |
содержит слагаемые, зависящие от d 2x и |
|||||||||||||||||||||||||||||||
d 2 y , чего не было ранее в формуле (1.21) при n = 2 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
1.4.3 Формула Тейлора для функции нескольких переменных |
|
|
|
|
|
|
||||||||||||||||||||||||||
Для функции нескольких переменных формула Тейлора имеет вид: |
|
|
|
|
|
|||||||||||||||||||||||||||
|
|
|
|
|
df |
(x , y |
0 |
) |
|
|
|
d 2 f (x , y |
0 |
) |
|
|
d n f (x , y |
0 |
) |
|
|
d n+1 f |
(x Qx, y |
0 |
+Qy) |
|
||||||
f (x, y)= f (x |
, y |
0 |
)+ |
|
0 |
|
|
+ |
0 |
|
|
+ + |
|
|
0 |
|
|
+ |
|
|
0 |
|
|
|
, (1.24) |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
0 |
|
|
|
1! |
|
|
|
|
2! |
|
|
|
|
|
|
n! |
|
|
|
|
|
|
(n +1)! |
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
Видим, что формула содержит в правой части функцию и ее дифференциалы различ- |
||||||||||||||||||||||||||||||||
ного порядка в заданной точке. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
Пример 1.28. Разложить по формуле Тейлора функцию f = x5 + y4 |
|
в т. |
M (1;2) до |
|||||||||||||||||||||||||||||
второго порядка включительно. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
Решение. Формула Тейлора в этом случае будет иметь вид: |
|
|
|
|
|
|
||||||||||||||||||||||||||
f (x, y)= f (M )+ df (M )+ d 2 f (M )
2!
f (M )=1+16 =17
df (M )= fx′(M )(x − x0 )+ f y′(M )(y − y0 ) fx′ = 5x4, f y′ = 4y3
Следовательно,
df (M )= 5 14 (x −1)+ 4 23(y −2)= 5(x −1)+32(y −2),
d 2 f (M )= fx′′2 (M )(x −1)2 + 2 fxy′′ (M )(x −1)(y −2)+ f y′′2 (M )(y −2)2,
где f ′′2 = 20x3 |
, |
f ′′ |
= 0, |
f ′′2 =12y2 |
, |
d 2 f (M )= 20(x −1)2 + 48(y −2)2 . |
x |
|
xy |
|
y |
|
|
Тогда разложение (1.24) будет иметь вид:
f (x, y)=17 +5(x −1)+32(y −2)+10(x −1)2 + 24(y −2)2 .
23
