- •ПЕРЕЧЕНЬ МАТЕРИАЛОВ
- •ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
- •1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
- •1.1 Функции многих переменных
- •1.1.1 Основные понятия и определения
- •1.1.2 Предел функции
- •1.1.3 Непрерывность функции
- •1.2 Частные производные функции нескольких переменных. Дифференциал функции
- •1.2.1 Частные производные функции нескольких переменных
- •1.2.2 Дифференцируемость функции двух переменных
- •1.2.3 Дифференциал функции нескольких переменных
- •1.2.4 Применение дифференциалов в приближенных вычислениях
- •1.3 Дифференцирование неявных и сложных функций. Приложения частных производных
- •1.3.1 Дифференцирование неявных и сложных функций. Приложения частных производных
- •1.3.2 Касательная плоскость и нормаль к поверхности
- •1.3.3 Вектор-градиент. Производная функции по направлению вектора
- •1.4 Частные производные и дифференциалы высших порядков. Формула Тейлора
- •1.4.1 Частные производные высших порядков
- •1.4.2 Дифференциалы высших порядков функции нескольких переменных
- •1.4.3 Формула Тейлора для функции нескольких переменных
- •1.5 Исследование функции на экстремум. Условный экстремум. Наибольшее и наименьшее значение функции в замкнутой области
- •1.5.1 Локальные экстремумы функций нескольких переменных
- •1.5.2 Условный экстремум
- •1.5.3 Наибольшее и наименьшее значение функции в замкнутой области
- •1.6 Метод наименьших квадратов
- •2 НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
- •2.1 Основные понятия
- •2.2 Основные свойства неопределенного интеграла
- •2.3 Замена переменной в неопределенном интеграле
- •2.4 Формула интегрирования по частям в неопределенном интеграле
- •2.5.1 Основные понятия. Разложение рациональных дробей в сумму простейших дробей
- •2.5.2 Правило отыскания коэффициентов
- •2.5.3 Интегрирование простейших рациональных дробей
- •2.6.1 Интегрирование тригонометрических функций
- •2.6.2 Интегрирование дробно-линейных иррациональностей
- •2.6.3 Биномиальный дифференциал и его интегрирование
- •2.6.4 Интегралы от квадратичных иррациональностей
- •2.6.5 Тригонометрические подстановки при интегрировании иррациональностей
- •2.6.6 Примеры на подстановки Чебышева
- •3 ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
- •3.1 Понятие определенного интеграла
- •3.2 Геометрический и физический смысл определенного интеграла
- •3.2.1 Площадь криволинейной трапеции
- •3.2.2 Работа переменной силы
- •3.3 Свойства определенного интеграла
- •3.4 Оценки интегралов. Формула среднего значения
- •3.5 Условия существования определенного интеграла
- •3.6 Определенный интеграл с переменным верхним пределом
- •3.7 Формула Ньютона-Лейбница
- •3.8 Замена переменной в определенном интеграле
- •3.9 Формула интегрирования по частям в определенном интеграле
- •3.10 Несобственные интегралы
- •3.10.2 Несобственный интеграл II рода (интеграл от разрывной функции)
- •3.11 Геометрические и механические приложения определенного интеграла
- •3.11.1 Вычисление площадей в прямоугольных координатах
- •3.11.2 Площадь криволинейного сектора в полярных координатах
- •3.11.3 Длина дуги кривой
- •3.11.5 Объем тела вращения
- •3.11.7 Вычисление работы с помощью определенного интеграла
- •3.11.8 Координаты центра масс
- •4.2 Основные свойства определенного интеграла по фигуре
- •4.3.1 Определение двойного интеграла. Геометрический и физический смысл
- •4.3.2 Основные свойства двойного интеграла
- •4.4 Тройной интеграл, его свойства. Геометрический и физический смысл тройного интеграла. Вычисление тройного интеграла в декартовой системе координат
- •4.4.2 Вычисление тройного интеграла в декартовой системе координат
- •4.5 Замена переменных в кратных интегралах
- •4.5.1 Замена переменных в двойном интеграле
- •4.6 Приложение кратных интегралов
- •4.6.1 Приложение двойного интеграла
- •4.6.2 Приложение тройного интеграла
- •4.7 Криволинейные интегралы I рода
- •4.7.1 Определение криволинейного интеграла I рода
- •4.7.2 Основные свойства КРИ-I
- •4.7.3 Вычисление КРИ-I
- •4.8 Криволинейные интегралы II рода
- •4.8.1 Определение криволинейного интеграла II рода
- •4.8.2 Cвойства КРИ-II
- •4.8.3 Вычисление КРИ-II
- •4.8.4 Формула Грина
- •4.8.5 Условия независимости КРИ-II от пути интегрирования
- •4.8.6 Восстановление функции по ее полному дифференциалу
- •4.9 Приложения криволинейных интегралов
- •4.9.2 Приложения КРИ-II
- •4.10 Поверхностные интегралы I рода
- •4.10.1 Определение поверхностного интеграла I рода
- •4.10.2 Основные свойства поверхностного интеграла I рода
- •4.10.3 Вычисление поверхностного интеграла I рода
- •4.11 Поверхностные интегралы II рода
- •4.11.1 Ориентация поверхности
- •4.11.2 Нормаль к поверхности
- •4.11.3 Определение поверхностного интеграла II рода
- •4.11.4 Свойства поверхностного интеграла II рода
- •4.11.5 Вычисление поверхностного интеграла II рода
- •4.11.6 Формула Остроградского
- •4.11.7 Формула Стокса
- •4.12 Приложения интегралов по поверхности
- •4.12.1 Приложения поверхностных интегралов I рода
- •4.12.2 Приложения поверхностных интегралов II рода
- •5 ТЕОРИЯ ПОЛЯ
- •5.1 Скалярное поле и его характеристики
- •5.2 Векторное поле и его характеристики
- •5.3 Потенциальное векторное поле. Операторы Гамильтона и Лапласа
- •6 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
- •6.1 Общие понятия
- •6.2 Дифференциальные уравнения I порядка
- •6.3 Уравнения с разделяющимися переменными
- •6.4 Однородные уравнения
- •6.5 Линейные уравнения
- •6.5.1 Интегрирование линейного однородного уравнения
- •6.5.2 Интегрирование линейного неоднородного уравнения
- •6.6 Уравнение Бернулли
- •6.7 Дифференциальные уравнения в полных дифференциалах
- •6.8 Линейные однородные ДУ высших порядков. Определитель Вронского
- •6.9 Дифференциальные уравнения II порядка, допускающие понижение порядка
- •6.12 Метод вариации произвольных постоянных
- •6.13 Системы дифференциальных уравнений
- •6.14 Системы линейных дифференциальных уравнений
- •ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
- •НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
- •Занятие 7. Неопределенный интеграл. Метод непосредственного интегрирования
- •Занятие 12. Интегрирование тригонометрических выражений
- •Занятие 13. Интегрирование иррациональных выражений
- •ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
- •Занятие 14. Вычисление определенных интегралов
- •Занятие 15. Приложения определенных интегралов
- •ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
- •Занятие 17. Двойной интеграл. Его вычисление в декартовой системе координат
- •Занятие 19. Приложения двойного интеграла
- •Занятие 21. Замена переменных в тройном интеграле
- •Занятие 22. Приложения тройного интеграла
- •Занятие 23. Криволинейные интегралы I рода
- •Занятие 25. Приложения криволинейных интегралов
- •Занятие 26. Поверхностные интегралы I рода
- •Занятие 30. Поток векторного поля. Циркуляция. Потенциальное поле
- •ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
- •Занятие 31. Дифференциальные уравнения первого порядка. Уравнения с разделяющимися переменными и однородные
- •Занятие 32. Линейные дифференциальные уравнения первого порядка, уравнения Бернулли и в полных дифференциалах
- •Занятие 33. Дифференциальные уравнения высших порядков, допускающие понижения порядка
- •Занятие 34. Линейные однородные и неоднородные дифференциальные уравнения с постоянными коэффициентами. Метод Лагранжа
- •Занятие 35. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами с правой частью специального вида
- •ТИПОВОЙ РАСЧЕТ № 1 «ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ»
- •ТИПОВОЙ РАСЧЕТ № 2 НЕОПРЕДЕЛЕННЫЙ И ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛЫ
- •ТИПОВОЙ РАСЧЕТ № 3 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
- •ТИПОВОЙ РАСЧЕТ № 4 ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И СИСТЕМЫ ДУ
- •ТЕСТ «ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. ПРИЛОЖЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА»
- •КОНТРОЛЬНАЯ РАБОТА № 2
- •ПРОГРАММА ДИСЦИПЛИНЫ
- •ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ ДЛЯ СТУДЕНТОВ 1 КУРСА (2 СЕМЕСТР)
- •ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКИХ ПОСОБИЙ
3 ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
3.1 Понятие определенного интеграла
Пусть функция f (x) определена на отрезке [a,b], a < b . Разобьем этот отрезок на n произвольных частей точками a = x0 < x1 < x2 < < xi−1 < xi < xi+1 < < xn = b . В каждом из полученных отрезков [xi−1, xi ] выберем произвольную точку ξi (xi−1 ≤ ξi ≤ xi ) и найдем значение функции в ней f (ξi ). Через ∆xi обозначим разность xi − xi−1, которую будем называть длиной частичного отрезка [xi−1, xi ]. Составим сумму
n |
|
S = f (ξ1)∆x1 + f (ξ2 )∆x2 + + f (ξn )∆xn = ∑ f (ξi )∆xi . |
(3.1) |
i=1 |
|
Сумма вида (3.1) называется интегральной суммой для функции |
f (x) на отрезке [a,b] |
для данного разбиения и данного выбора точек ξi .
Обозначим через λ длину наибольшего частичного отрезка разбиения: λ = max{∆xi}.
i=1,n
Определение. Если существует конечный предел I интегральной суммы (3.1) при λ → 0 , то этот предел называется определенным интегралом от функции f (x) по отрезку [a,b] и обозначается следующим образом:
b
I = ∫ f (x)dx или
a
b |
|
n |
|
∫ f (x)dx = lim |
∑ f (ξi )∆xi . |
(3.2) |
|
a |
λ→0 i=1 |
|
|
В этом случае функция f (x) называется интегрируемой на [a,b], числа a и b называются соответственно нижним и верхним пределами интегрирования, f (x) – подынтегральной функцией, x – переменной интегрирования.
Рассмотрим более подробно предельный переход в формуле (3.2). Предположим, что отрезок [a,b] последовательно разбивают на части сначала одним способом, потом другим и т.д. В результате получена последовательность {τk } таких разбиений и соответственно последовательность интегральных сумм {Sk }, где интегральные суммы зависят от λ. И опреде-
ление определенного интеграла можно дать следующим образом: функция f (x) называется интегрируемой на [a,b], если для любой последовательности разбиений {τk }, у которой klim→∞λk = 0 соответствующая последовательность интегральных сумм {Sk } стремится всегда
к одному и тому же пределу I = klim→∞ Sk .
Пример 3.1. Используя определение, вычислить интеграл ∫cdx , где c – некоторое
число.
55
