- •ПЕРЕЧЕНЬ МАТЕРИАЛОВ
- •ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
- •1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
- •1.1 Функции многих переменных
- •1.1.1 Основные понятия и определения
- •1.1.2 Предел функции
- •1.1.3 Непрерывность функции
- •1.2 Частные производные функции нескольких переменных. Дифференциал функции
- •1.2.1 Частные производные функции нескольких переменных
- •1.2.2 Дифференцируемость функции двух переменных
- •1.2.3 Дифференциал функции нескольких переменных
- •1.2.4 Применение дифференциалов в приближенных вычислениях
- •1.3 Дифференцирование неявных и сложных функций. Приложения частных производных
- •1.3.1 Дифференцирование неявных и сложных функций. Приложения частных производных
- •1.3.2 Касательная плоскость и нормаль к поверхности
- •1.3.3 Вектор-градиент. Производная функции по направлению вектора
- •1.4 Частные производные и дифференциалы высших порядков. Формула Тейлора
- •1.4.1 Частные производные высших порядков
- •1.4.2 Дифференциалы высших порядков функции нескольких переменных
- •1.4.3 Формула Тейлора для функции нескольких переменных
- •1.5 Исследование функции на экстремум. Условный экстремум. Наибольшее и наименьшее значение функции в замкнутой области
- •1.5.1 Локальные экстремумы функций нескольких переменных
- •1.5.2 Условный экстремум
- •1.5.3 Наибольшее и наименьшее значение функции в замкнутой области
- •1.6 Метод наименьших квадратов
- •2 НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
- •2.1 Основные понятия
- •2.2 Основные свойства неопределенного интеграла
- •2.3 Замена переменной в неопределенном интеграле
- •2.4 Формула интегрирования по частям в неопределенном интеграле
- •2.5.1 Основные понятия. Разложение рациональных дробей в сумму простейших дробей
- •2.5.2 Правило отыскания коэффициентов
- •2.5.3 Интегрирование простейших рациональных дробей
- •2.6.1 Интегрирование тригонометрических функций
- •2.6.2 Интегрирование дробно-линейных иррациональностей
- •2.6.3 Биномиальный дифференциал и его интегрирование
- •2.6.4 Интегралы от квадратичных иррациональностей
- •2.6.5 Тригонометрические подстановки при интегрировании иррациональностей
- •2.6.6 Примеры на подстановки Чебышева
- •3 ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
- •3.1 Понятие определенного интеграла
- •3.2 Геометрический и физический смысл определенного интеграла
- •3.2.1 Площадь криволинейной трапеции
- •3.2.2 Работа переменной силы
- •3.3 Свойства определенного интеграла
- •3.4 Оценки интегралов. Формула среднего значения
- •3.5 Условия существования определенного интеграла
- •3.6 Определенный интеграл с переменным верхним пределом
- •3.7 Формула Ньютона-Лейбница
- •3.8 Замена переменной в определенном интеграле
- •3.9 Формула интегрирования по частям в определенном интеграле
- •3.10 Несобственные интегралы
- •3.10.2 Несобственный интеграл II рода (интеграл от разрывной функции)
- •3.11 Геометрические и механические приложения определенного интеграла
- •3.11.1 Вычисление площадей в прямоугольных координатах
- •3.11.2 Площадь криволинейного сектора в полярных координатах
- •3.11.3 Длина дуги кривой
- •3.11.5 Объем тела вращения
- •3.11.7 Вычисление работы с помощью определенного интеграла
- •3.11.8 Координаты центра масс
- •4.2 Основные свойства определенного интеграла по фигуре
- •4.3.1 Определение двойного интеграла. Геометрический и физический смысл
- •4.3.2 Основные свойства двойного интеграла
- •4.4 Тройной интеграл, его свойства. Геометрический и физический смысл тройного интеграла. Вычисление тройного интеграла в декартовой системе координат
- •4.4.2 Вычисление тройного интеграла в декартовой системе координат
- •4.5 Замена переменных в кратных интегралах
- •4.5.1 Замена переменных в двойном интеграле
- •4.6 Приложение кратных интегралов
- •4.6.1 Приложение двойного интеграла
- •4.6.2 Приложение тройного интеграла
- •4.7 Криволинейные интегралы I рода
- •4.7.1 Определение криволинейного интеграла I рода
- •4.7.2 Основные свойства КРИ-I
- •4.7.3 Вычисление КРИ-I
- •4.8 Криволинейные интегралы II рода
- •4.8.1 Определение криволинейного интеграла II рода
- •4.8.2 Cвойства КРИ-II
- •4.8.3 Вычисление КРИ-II
- •4.8.4 Формула Грина
- •4.8.5 Условия независимости КРИ-II от пути интегрирования
- •4.8.6 Восстановление функции по ее полному дифференциалу
- •4.9 Приложения криволинейных интегралов
- •4.9.2 Приложения КРИ-II
- •4.10 Поверхностные интегралы I рода
- •4.10.1 Определение поверхностного интеграла I рода
- •4.10.2 Основные свойства поверхностного интеграла I рода
- •4.10.3 Вычисление поверхностного интеграла I рода
- •4.11 Поверхностные интегралы II рода
- •4.11.1 Ориентация поверхности
- •4.11.2 Нормаль к поверхности
- •4.11.3 Определение поверхностного интеграла II рода
- •4.11.4 Свойства поверхностного интеграла II рода
- •4.11.5 Вычисление поверхностного интеграла II рода
- •4.11.6 Формула Остроградского
- •4.11.7 Формула Стокса
- •4.12 Приложения интегралов по поверхности
- •4.12.1 Приложения поверхностных интегралов I рода
- •4.12.2 Приложения поверхностных интегралов II рода
- •5 ТЕОРИЯ ПОЛЯ
- •5.1 Скалярное поле и его характеристики
- •5.2 Векторное поле и его характеристики
- •5.3 Потенциальное векторное поле. Операторы Гамильтона и Лапласа
- •6 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
- •6.1 Общие понятия
- •6.2 Дифференциальные уравнения I порядка
- •6.3 Уравнения с разделяющимися переменными
- •6.4 Однородные уравнения
- •6.5 Линейные уравнения
- •6.5.1 Интегрирование линейного однородного уравнения
- •6.5.2 Интегрирование линейного неоднородного уравнения
- •6.6 Уравнение Бернулли
- •6.7 Дифференциальные уравнения в полных дифференциалах
- •6.8 Линейные однородные ДУ высших порядков. Определитель Вронского
- •6.9 Дифференциальные уравнения II порядка, допускающие понижение порядка
- •6.12 Метод вариации произвольных постоянных
- •6.13 Системы дифференциальных уравнений
- •6.14 Системы линейных дифференциальных уравнений
- •ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
- •НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
- •Занятие 7. Неопределенный интеграл. Метод непосредственного интегрирования
- •Занятие 12. Интегрирование тригонометрических выражений
- •Занятие 13. Интегрирование иррациональных выражений
- •ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
- •Занятие 14. Вычисление определенных интегралов
- •Занятие 15. Приложения определенных интегралов
- •ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
- •Занятие 17. Двойной интеграл. Его вычисление в декартовой системе координат
- •Занятие 19. Приложения двойного интеграла
- •Занятие 21. Замена переменных в тройном интеграле
- •Занятие 22. Приложения тройного интеграла
- •Занятие 23. Криволинейные интегралы I рода
- •Занятие 25. Приложения криволинейных интегралов
- •Занятие 26. Поверхностные интегралы I рода
- •Занятие 30. Поток векторного поля. Циркуляция. Потенциальное поле
- •ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
- •Занятие 31. Дифференциальные уравнения первого порядка. Уравнения с разделяющимися переменными и однородные
- •Занятие 32. Линейные дифференциальные уравнения первого порядка, уравнения Бернулли и в полных дифференциалах
- •Занятие 33. Дифференциальные уравнения высших порядков, допускающие понижения порядка
- •Занятие 34. Линейные однородные и неоднородные дифференциальные уравнения с постоянными коэффициентами. Метод Лагранжа
- •Занятие 35. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами с правой частью специального вида
- •ТИПОВОЙ РАСЧЕТ № 1 «ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ»
- •ТИПОВОЙ РАСЧЕТ № 2 НЕОПРЕДЕЛЕННЫЙ И ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛЫ
- •ТИПОВОЙ РАСЧЕТ № 3 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
- •ТИПОВОЙ РАСЧЕТ № 4 ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И СИСТЕМЫ ДУ
- •ТЕСТ «ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. ПРИЛОЖЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА»
- •КОНТРОЛЬНАЯ РАБОТА № 2
- •ПРОГРАММА ДИСЦИПЛИНЫ
- •ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ ДЛЯ СТУДЕНТОВ 1 КУРСА (2 СЕМЕСТР)
- •ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКИХ ПОСОБИЙ
Белорусский национальный технический университет
Факультет информационных технологий и робототехники Кафедра высшей математики № 1
СОГЛАСОВАНО |
СОГЛАСОВАНО |
Заведующая кафедрой |
Декан факультета |
_______ Катковская И. Н. |
_______ Трофименко Е. Е. |
__ июля 2014 г. |
__ июля 2014 г. |
УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ПО УЧЕБНОЙ ДИСЦИПЛИНЕ
МАТЕМАТИКА. ЧАСТЬ 2
для специальностей:
1-53 01 01 – Автоматизация технологических процессов и производств 1-53 01 02 – Автоматизированные системы обработки информации 1-53 01 05 – Автоматизированные электроприводы 1-53 01 06 – Промышленные роботы и робототехнические комплексы
1-54 01 02 – Методы и приборы контроля качества и диагностики состояния объектов 1-55 01 01 – Интеллектуальные приборы, машины, технологии и производства 1-55 01 02 – Интегральные сенсорные системы 1-70 02 01 – Промышленное и гражданское строительство
1-31 03 02 – Механика
1-36 01 01 – Технология машиностроения 1-36 01 03 – Технологическое оборудование машиностроительного производства
1-36 01 04 – Оборудование и технологии высокоэффективных процессов обработки материалов 1-36 01 07 – Гидропневмосистемы мобильных и технологических машин 1-36 11 01 − Подъемно-транспортные, строительные, дорожные машины и оборудование
1-44 01 01 – Организация перевозок и управление на автомобильном и городском транспорте 1-44 01 02 – Организация дорожного движения
Составители: Бричикова Елена Алексеевна, Воронович Галина Константиновна, Габасова Ольга Рафаиловна, Катковская Ирина Николаевна, Лебедева Галина Ивановна, Мартыненко Игнат Михайлович, Романюк Георгий Александрович, Сагарда Елена Васильевна, Федосик Евгений Анатольевич, Чепелев Николай Иосифович, Чепелева Тереса Иосифовна
___________________________________________________________________________
Рассмотрено и утверждено на заседании совета факультета информационных технологий
и робототехники 29 мая 2014 г., протокол № 9
1
ПЕРЕЧЕНЬ МАТЕРИАЛОВ
Электронный учебно-методический комплекс по учебной дисциплине «МАТЕМАТИКА. Часть 2» состоит из следующих разделов:
–кратких теоретических материалов по курсу математики второго семестра обучения;
–материалов для проведения практических занятий по учебной дисцип-
лине;
–материалов для текущей и итоговой аттестации;
–вспомогательных материалов.
Теоретический раздел ЭУМК содержит материалы для теоретического изучения учебной дисциплины в объеме, установленном учебным планом по специальности.
Практический раздел ЭУМК содержит материалы для проведения практических занятий в аудитории и заданий для самостоятельной работы.
Раздел контроля знаний ЭУМК содержит материалы текущей и итоговой аттестации, позволяющие определить соответствие результатов учебной деятельности обучающихся требованиям образовательных стандартов высшего образования и учебно-программной документации, и представлен типовыми расчетами по темам учебной дисциплины и тестами. В разделе тестов приведен пример их решения и размещены ответы ко всем тестам.
Вспомогательный раздел ЭУМК содержит программу дисциплины, экзаменационные вопросы, перечень учебно-методических пособий, рекомендуемых к использованию в образовательном процессе.
2
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Цели ЭУМК: ЭУМК предназначен для изучения дисциплины «МАТЕМАТИКА». Он содержит набор методических материалов по этой дисциплине.
Особенности структурирования и подачи учебного материала: ЭУМК со-
стоит из четырех частей.
Теоретический раздел содержит набор методических материалов по этому предмету: рекомендаций студенту для работы с дисциплиной, кратких теоретических материалов, посвященных изложению в наглядном виде основных определений, свойств, формул и теорем, сопровождающихся подробными примерами.
Практический раздел содержит практикум по дисциплине, состоящий из материалов для проведения аудиторных занятий по математике. Каждое занятие содержит задачи для домашней работы с ответами.
Раздел контроля знаний содержит типовые расчеты, тесты для организации текущего контроля знаний студентов и контрольные работы для студентов заочного отделения.
Вспомогательный раздел содержит программу дисциплины, перечень экзаменационных вопросов, список рекомендуемой литературы.
Рекомендации по организации работы с ЭУМК: конспект лекций в ЭУМК представляет собой гипертекстовый pdf-документ, предоставляющий возможность навигации по содержанию документа. Все задачи в практикуме снабжены ответами, которые могут быть использованы для самоконтроля. В конце каждого раздела практикума предложены типовые расчеты, предназначенные для самостоятельного выполнения. Тестовые задания при текущем контроле могут быть выполнены как в аудитории, так и в компьютерной системе тестирования.
3
