Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Математика. Специальные разделы. Элементы теории функций комплексной переменной и операционного исчисления. Теория вероятностей. Элементы математической статистики

.pdf
Скачиваний:
0
Добавлен:
24.11.2025
Размер:
1.81 Mб
Скачать

 

f z Re z z 2 . Контур Г – дуга

 

1 10i

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

параболы y 2x2 ,

0 x 1

3.

 

 

 

 

 

 

 

 

 

4.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

3

Вычислить интеграл f z dz

 

 

e2i

 

 

 

 

 

 

 

 

 

2. i sin 2

 

 

 

 

 

 

 

 

 

 

 

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

по замкнутому контуру С.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f z

 

 

e z

 

. Контур С – окруж-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 2 4

3.

0

 

 

 

 

 

 

 

 

 

 

 

 

4. e 2i

 

 

 

 

 

 

 

 

 

 

ность

 

z

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Найти изображение оригинала

1. F ( p)

 

 

p 2 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t) cos3 t sin t

 

 

 

p 4 20 p 2 64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. F ( p)

 

3 p 2 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 4 20 p 2 64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. F ( p)

 

p 2 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 4 20 p 2 64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. F ( p)

 

3 p 2 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 4 20 p 2 64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Решить операторным методом линей-

 

 

x(t) 1 t cht

 

 

 

 

x(t) 1 t 2cht

 

ное дифференциальное уравнение

1.

 

 

 

2.

 

 

 

 

2e

t

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

 

x(t) 1 t 2cht

4.

x(t) 1 2t 2cht

 

если x(0) x (0)

1; x 0 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Решить операторным методом си-

 

 

 

 

t

2

 

t

 

 

 

 

 

 

 

 

t

2

 

 

t

 

стему линейных дифференциальных

 

x(t) 4 t

 

 

3e 2

 

 

x(t)

4 t

 

 

 

3e 2

 

 

 

 

 

 

 

 

 

 

 

 

уравнений

 

 

 

 

1.

 

 

 

 

2

 

 

 

2.

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 2e

2

 

 

 

 

2t 2

3e

2

 

x

y y 0,

 

 

y(t) t

 

 

 

 

y(t)

 

 

 

 

x

 

t,

 

 

 

 

 

 

 

 

 

2

 

 

t

 

 

 

 

 

 

 

 

2

 

 

 

t

 

y

 

 

 

 

 

 

t

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

x(t) 4

t

 

 

 

3e 2

 

x(t)

4

t

 

 

 

 

 

3e 2

 

если x(0) 1;

y(0) 1

3.

 

2

 

 

 

4.

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

t

2

 

3e

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y(t) 2t 2 3e

 

 

y(t)

 

 

 

ВАРИАНТ 25

Условие

 

 

Варианты ответа

п/п

 

 

 

 

 

 

 

 

1

Найти аналитическую функцию

 

f z z2 z

1

 

f z z2 z

 

f z u iv по известной действи-

1.

2.

 

 

 

 

 

 

 

тельной части u x2 y2 x

 

 

 

 

 

 

при условии f 0 0

3.

f z z2 z

 

4.

f z z2 iz

 

 

 

 

 

 

 

2

Вычислить интеграл f z dz по

1.

sh1 ch1 1

 

2.

ch1 sh1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

разомкнутому контуру Г,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где f z

z cos z . Контур Г – произ-

3.

ch1 sh1 1

 

 

 

 

 

 

 

 

 

4. ch1 sh1

 

 

 

вольный контур, соединяющий точки

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z1

0 и z2 i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Вычислить интеграл f z dz

1.

- 2 i

 

 

 

 

 

 

 

 

 

 

 

 

2. 2 i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

по замкнутому контуру С.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f z

 

 

 

cosz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. Контур С – окруж-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

1

 

 

 

 

 

 

 

 

 

z 2 2

3.

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

ность

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Найти изображение оригинала

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

1.

F ( p)

1

ln

 

p

 

100

 

2.

F ( p)

 

1

ln

p 100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2 14

 

 

 

p2 14

 

 

 

 

 

sin 7t sin 3t

 

 

 

3

 

 

 

 

 

4

 

 

 

f (t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

F ( p)

 

1

ln

p 2 100

4.

F ( p)

1

ln

 

p 2 100

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

p 2 14

2

 

p 2 14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Решить операторным методом ли-

 

x(t) 1 t

e

t

 

2 cos 2t sin 2t

 

 

 

 

 

 

 

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

нейное дифференциальное уравнение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

et

 

 

 

 

 

 

 

 

 

 

 

 

x

 

2x

 

 

5x 10t 1,

2.

x(t) 1 2t

 

2 2 cos 2t sin 2t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

et

 

 

 

 

 

 

 

 

 

 

 

если x(0) x (0) 0

3.

x(t) 1 2t

 

 

 

 

2 cos 2t sin 2t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

x(t) 1 2t

et

2 cos 2t sin t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Решить операторным методом си-

1.

x(t) 2 4t 2 cos t 3sin t

 

 

 

 

 

 

 

 

стему линейных дифференциальных

 

y(t) 2sin t 2t

 

 

 

 

 

 

 

 

 

 

 

уравнений

 

 

 

 

 

 

 

 

 

 

 

 

 

x(t) 2 t 2 cos t 3sin t

 

 

 

 

 

 

 

 

x 4 y 2x cos t,

2.

 

 

 

 

 

 

 

 

 

y(t) 2sin t 2t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 y sin t,

 

x(t) 2 4t 2 cos t 3sin t

 

 

 

 

 

 

 

 

y x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

 

 

 

 

 

 

2t

 

 

 

 

 

 

 

 

 

 

 

если x(0) 0; y(0) 0

 

y(t) sin t

 

 

 

 

 

 

 

 

 

 

 

4. x(t) 2 4t 2 cos t 3sin t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y(t) 2sin t 2t

 

 

 

 

 

 

 

 

 

 

ВАРИАНТ 26

Условие

 

 

Варианты ответа

п/п

 

 

 

 

 

 

 

 

 

 

1

Найти аналитическую функцию

 

f z ln z i

2. f z ln z

 

f z u iv по известной мнимой

1.

 

части v arctg

y

при условии

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

f 1 0

3.

f z ln z 1

4. f z ln z i

 

 

 

 

 

 

 

 

 

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Вычислить интеграл f z dz

 

1 i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

по разомкнутому контуру Г,

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где

f z Re z. Контур Г – ло-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

маная ОАВ, где O 0, 0 ,

A 1, 0 ,

3.

 

1

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. 2 i

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 1, 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Вычислить интеграл

 

f z dz

 

i 2e 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. 5 i

 

 

 

 

 

 

 

 

 

 

 

по замкнутому контуру С.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f z

 

 

e z

 

 

 

 

 

 

. Контур С

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 3 z 1

3. 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 ei

 

 

 

 

 

 

 

 

 

 

 

окружность

 

 

z 2

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Найти изображение оригинала

1.

 

F ( p)

1

 

ln

p

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e t

sht

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

p 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. F ( p)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. F ( p)

 

1

 

ln

 

p 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. F ( p)

 

1

ln

p 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Решить операторным методом

1.

 

x(t)

 

 

 

 

 

 

 

e

2t

 

4cos t

 

2sin t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

линейное дифференциальное

 

 

x(t) 5 2e2t

 

3cos t 2sin t

 

 

 

 

 

 

 

 

 

 

 

уравнение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10e

2t

,

 

 

 

 

 

 

 

 

 

 

 

3.

 

x(t) 5 e2t

4cos t sin t

 

 

 

 

 

 

 

 

 

 

 

x

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

если

x(0)

 

 

 

 

 

 

 

 

 

 

 

 

0

4.

 

x(t) 5 e2t

4cos t 2sin t

 

 

 

 

 

 

 

 

 

 

 

 

x (0)

 

 

 

x (0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Решить операторным методом

 

 

 

1 t e

3t

e

t

 

 

 

 

 

 

 

 

 

e

3t

 

e

t

 

систему линейных дифференци-

 

 

 

 

 

 

 

 

 

 

 

 

 

x(t)

 

 

 

 

 

 

x(t) 1 t

 

 

 

 

 

 

альных уравнений

 

 

 

 

 

 

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

3t

 

2.

 

 

 

 

 

 

 

 

t

 

 

 

3t

 

 

 

 

 

 

 

 

 

 

1 t e

e

 

 

 

 

 

 

 

 

 

e

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y(t)

 

 

 

 

 

y(t) 1 2t

 

 

 

 

 

 

x 2 y x t,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t,

 

 

 

 

 

 

 

 

 

 

 

1 t e

3t

e

t

 

 

 

 

 

3t

e

t

 

y 2x y

 

 

 

 

 

 

 

 

 

3.

x(t)

 

 

 

 

 

 

4.

x(t) 1 t e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

3t

 

 

 

 

 

t

 

 

 

3t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 t e

e

 

 

 

 

t e

 

e

 

 

если x(0) 1;

y(0) 3

 

 

 

y(t)

 

 

 

 

 

 

y(t) 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВАРИАНТ 27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Условие

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Варианты ответа

 

 

 

 

 

 

 

 

 

 

п/п

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

Найти аналитическую функцию

 

 

f z

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f z

1

 

 

 

 

 

 

 

 

 

 

 

 

 

f z

u iv

по известной мнимой

1.

 

z 2i

 

 

 

 

 

 

 

 

 

 

2.

 

 

2iz 2i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

части v 2x

 

 

 

 

2 при

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 y 2

3. f z

i

2i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. f z

1

2z i

 

 

 

 

 

 

 

условии

 

f 1 1

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

 

2

Вычислить интеграл

f z dz

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

πi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

по разомкнутому контуру Г,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где

f z

 

 

. Контур Г – нижняя

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

полуокружность

 

z

 

2

от z1

2

3.

 

πi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

до z2 2

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Вычислить интеграл

f z dz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

1.

- i sin1

 

 

 

 

 

 

 

 

 

 

2.

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

по замкнутому контуру С.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f z

 

sinz

. Контур С – окруж-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z i 3

3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 sh1

 

 

 

 

 

 

 

 

 

 

 

 

sh1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ность

 

z i

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Найти изображение оригинала

1. F ( p)

12 p 1 p

2

2 p 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 4 p 2 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t) 3 e shτ dτ

 

 

2.

 

F ( p)

 

24 p 1 p 2

2 p 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 4 p 2 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

 

F ( p)

 

24 p 1 p 2 2 p 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 4 p

2 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

F ( p)

 

12 p 1 p 2 2 p 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 4 p

2 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Решить операторным методом

1. x(t) 1

e

t

2 2t t 2 2. x(t) 1

e

t

 

2 2t t 2

 

 

линейное дифференциальное

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

уравнение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

x

 

te ,

 

 

 

 

 

 

 

 

 

 

 

 

x(t) 1

e

 

 

 

2 t t

2 4. x(t) 1

e

 

 

 

 

2 2t t 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

если x(0) x (0) 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Решить операторным методом

 

 

 

 

 

 

2t

6sh2t

 

 

 

 

 

3te

2t

 

6sh2t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x(t) te

 

 

 

 

 

x(t)

 

 

 

 

 

 

 

систему линейных дифференци-

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2t

3t 1 ch2t

 

 

 

 

2t

 

t

 

1 ch2t

 

 

альных уравнений

 

 

 

y(t) e

 

 

y(t) e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 3y x,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2t

 

 

 

 

 

 

 

 

 

 

 

 

 

2t

 

6sh2t

 

 

 

3te

2t

 

 

3sh2t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3te

 

 

 

 

 

 

 

y

x

4e ,

 

 

 

x(t)

 

 

 

 

x(t)

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2t

3t 1 ch2t

 

 

e

2t

3t 1 ch2t

 

 

если x(0) 0;

y(0) 3

 

 

y(t) e

 

 

y(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВАРИАНТ 28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Условие

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Варианты ответа

 

 

 

 

 

 

 

 

п/п

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

Найти аналитическую функцию

 

 

 

 

 

1.

f z 1 1

 

2.

f z 1

 

 

 

 

 

 

f z u iv

 

по известной мнимой части

 

 

 

 

 

 

 

 

 

 

 

2

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v

 

 

 

y

 

 

 

 

при условии f 2 0

 

 

 

 

 

 

f z

1

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

y 2

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

 

 

4.

 

 

f

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Вычислить интеграл

f z dz по разомк-

1.

1

 

 

4

i

 

 

 

 

 

2.

4

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f z Im z . Кон-

2

3

 

 

 

 

 

3

 

 

 

 

 

нутому контуру Г, где

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

тур Г – верхняя полуокружность

 

z

 

3

3.

1

 

 

 

 

 

 

 

 

 

4. 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

от точки z 3 до точки z

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Вычислить интеграл

f z dz по за-

1. 0

 

 

 

 

 

 

 

 

 

2.

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

sin iz / 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

мкнутому контуру С.

f z

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z2 1

3.

2

 

 

 

 

 

 

 

4. 2 i

 

 

 

 

 

Контур С – окружность

 

z i

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Найти изображение оригинала

 

 

 

 

 

1.

 

 

F ( p)

 

arctg p arctg p

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

f (t)

 

sin 3t cos 2t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

 

F ( p)

 

arctg p arctg p

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

 

 

F ( p)

 

arctg p arctg p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

 

F ( p)

 

arctg p arctg p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Решить операторным методом линейное

1.

 

 

x(t)

2 e

t

cos t sin t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

дифференциальное уравнение

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos t,

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

 

x(t)

 

2 e t

cos t sin t

 

 

 

 

x

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

если

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 e t

cos t 2sin t

 

 

x(0) 2; x (0) x (0)

 

 

 

 

 

3.

 

 

x(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

 

x(t)

 

2 e t

cos t 2sin t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Решить операторным методом систему

 

 

 

 

 

 

2 e

t

 

 

 

 

 

2 e

t

 

линейных дифференциальных уравнений

 

x(t)

 

 

 

 

 

 

x(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

y(t) 2 e t

 

2.

y(t) 2 e t

 

x 2x y z,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 2e t

 

 

 

 

 

2 2e t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z(t)

 

 

 

 

z(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y x z,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x(t) 2 e t

 

 

 

 

x(t) 2e t

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 3x y 2z,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 e t

 

 

 

 

 

2e t

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

y(t)

 

4.

y(t)

 

если

 

x(0) 1; y(0) 1; z(0) 0

 

 

 

 

 

 

 

 

 

 

1 e t

 

 

 

 

 

1 e t

 

 

 

 

 

 

 

 

z(t)

 

 

 

 

z(t)

ВАРИАНТ 29

 

Условие

 

 

Варианты ответа

п/п

 

 

 

 

 

 

 

 

 

 

 

1

Найти аналитическую функцию

1.

f z 2iez

2.

f z 2ez

 

f z u iv

по известной мнимой части

 

 

 

 

 

 

 

v 2ex sin y

при условии f 0 2

3.

f z e z

4.

f z

1

ez

 

 

 

 

 

 

 

 

 

 

2

 

34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Вычислить интеграл f z dz

по разомк-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

 

i

3

sh1

 

 

 

 

 

 

 

 

 

 

 

2.

i 3

1 ch1

 

 

нутому контуру Г, где f z Re cos z sin z.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

Контур Г – отрезок прямой Re z

π

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

i 3

1 sh1

 

 

 

 

 

 

 

 

 

i

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

 

 

 

 

 

 

 

 

4.

 

ch1

 

 

 

 

 

 

 

Im z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Вычислить интеграл

f z dz

по за-

1.

ie 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. 2 e

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f z

 

 

 

eiz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

мкнутому контуру С.

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

2 1

 

3.

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. e 1

 

 

 

 

 

 

Контур С – окружность

 

z i

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Найти изображение оригинала

 

 

 

 

 

 

 

 

 

2 p 3 p

2

6 p 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. F ( p)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p p2 6 p 10 3

 

 

 

 

 

 

 

f (t) 2 e 3 cos d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 3 p2 6 p 6

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

F ( p)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p p2 6 p

10 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. F ( p)

2

p 3

p2

p 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

p2 6 p 10 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. F ( p)

2

p 3

p2

p 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

p2 6 p 10 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Решить операторным методом линейное

1.

 

x(t)

 

2

 

e

t

 

cos t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

дифференциальное уравнение

 

 

 

 

 

 

 

x(t) t 2 et

 

cos t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2sin t,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

2x x t

 

 

 

 

 

 

 

 

 

 

 

3.

 

x(t) t 2 et

 

cos t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

если

x(0) 0;

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

x(t) 3t 2 et

cos t

 

 

 

 

 

 

 

 

 

 

 

 

 

x (0) 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Решить операторным методом систему

 

 

 

 

 

 

 

 

3t

 

 

 

 

 

 

2t

 

 

 

 

 

 

3t

 

 

2t

 

линейных дифференциальных уравнений

 

x(t)

2e

 

 

2e

 

 

 

 

 

x(t)

2e

 

 

2e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

y(t) 2e2t

3e3t

2.

y(t) 3e2t

2e3t

 

x y z,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5e

 

 

 

 

 

 

 

 

2t 6e3t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z(t) 6e2t

3t

 

 

 

 

z(t) 5e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y 3x z, ,

 

 

 

 

 

 

 

 

 

 

 

 

 

x(t) 2e3t 2e2t

 

 

x(t) 2e3t

 

2e2t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 3x y,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2e2t

3e3t

 

 

 

 

 

 

2t 3e3t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

y(t)

4.

y(t) 2e

 

 

 

 

x(0) 0; y(0) 1; z(0) 1

 

 

 

 

 

 

 

 

 

 

 

2t 6e3t

 

 

 

 

 

 

2t 6e3t

 

если

 

 

z(t) 5e

 

 

 

z(t) 5e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВАРИАНТ 30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Условие

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Варианты ответа

 

 

 

 

 

п/п

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

Найти аналитическую функцию

 

1. f z ln z i

 

 

 

 

 

 

 

2.

f z ln z i

 

 

 

 

 

 

 

f z

u iv по известной дей-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ствительной части

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

1

ln x2

y2

при условии

 

3.

 

f z ln z

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

f z ln

z

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f 1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Вычислить интеграл

f z dz

 

 

4000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

4000

 

 

 

 

 

 

 

 

 

 

 

 

1.

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

по разомкнутому контуру Г, где

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f z z Im

z2 . Контур Г – от-

 

 

4000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

πi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

πi

 

 

 

 

 

 

 

 

резок прямой Re z 1,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Im z

10

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Вычислить интеграл

f z dz

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

по замкнутому контуру С.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f z

 

 

 

 

 

z

 

 

. Контур С

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 2 3 z 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

4

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. -

 

7 i

 

 

 

 

 

 

 

 

 

 

 

окружность

z 3

6

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Найти изображение оригинала

 

 

F ( p)

2 p

3

12 p

2

 

 

30 p 26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t) e 2tt2 cht

 

 

 

 

 

 

 

p 2

 

4 p 3 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 p

3 12 p 2 20 p 28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

F ( p)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 2

 

4 p 3 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

 

F ( p)

2 p

3 12 p 2 30 p 28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 2

 

4 p 3 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

F ( p)

2 p

3 14 p 2 30 p 28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 2

 

4 p 3 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Решить операторным методом

 

 

x(t) cos t sin t

t

2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

линейное дифференциальное

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

уравнение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3t 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

x(t) cos t sin t

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

 

x(t) cos t sin t

t 2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

если

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x(0) x (0) 0; x (0) 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

x(t) cos t sin t

t 2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Решить операторным методом сис-

 

 

 

 

 

 

 

 

t

 

 

 

2t

 

 

 

 

 

 

 

3t

 

 

 

 

 

 

 

 

 

t

 

2t

 

 

3t

 

тему линейных дифференциаль-

 

x(t)

6e

 

e

 

4e

 

 

 

 

 

 

 

x(t) 6e

 

e

 

 

4e

 

 

ных уравнений

 

 

 

 

 

 

1.

y(t) 3et

2e3t

 

 

 

 

 

 

 

 

2.

 

 

y(t) 3et

2e3t

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2x 2 y 4z,

 

 

 

 

z(t)

6et

6e3t

 

e2t

 

 

 

 

 

z(t) 6et 6e3t e2t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x(t) 6et

e2t

 

4e3t

 

 

 

 

 

 

x(t) 6et

4e2t e3t

 

y

 

y

2z,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

3t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

3t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

y(t) 2e

3e

 

 

 

 

 

4.

 

 

y(t) 3e

2e

 

 

 

 

z 5x 2 y 7z,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6et

6e3t

e

2t

 

 

 

 

 

6et 6e3t

e2t

 

если

 

x(0) 1;

y(0) 1;

z(0) 1

 

z(t)

 

 

 

 

z(t)

Тема 11. Теория вероятностей. Элементы математической статистики

Теоретические вопросы

36

11.1.Понятия случайного события и случайной величины.

11.2.Определение вероятности случайного события, свойства вероятности.

11.3.Геометрическая вероятность.

11.4.Понятие условной вероятности.

11.5.Формула полной вероятности.

11.6.Формула Байеса.

11.7.Формула Бернулли.

11.8.Биномиальное распределение вероятностей.

11.9.Распределение Пуассона.

11.10.Локальная предельная теорема Муавра–Лапласа.

11.11.Интегральная предельная теорема Муавра–Лапласа.

11.12.Закон распределения вероятностей дискретной случайной величины

(с. в.).

11.13.Функция распределения с. в., ее свойства.

11.14.Функция распределения дискретной с. в.

11.15.Плотность вероятностей непрерывной с. в.

11.16.Законы распределения с. в.: биномиальный закон, распределение Пуассона, равномерное распределение, нормальное распределение, экспонци-

альное распределение.

11.17.Закон распределения двумерной с. в.

11.18.Функция распределения двумерной с. в.

11.19.Плотность вероятностей двумерной с. в.

11.20.Условные законы распределения вероятностей с. в.

11.21.Математическое ожидание дискретной и непрерывной с. в., свойства.

11.22.Дисперсия дискретной и непрерывной с. в.

11.23.Математическое ожидание и дисперсия основных законов распреде-

ления с. в.

11.24.Мода и медиана с. в. Начальные и центральные моменты с. в.

11.25.Ковариация с. в. Коэффициент корреляции.

37

11.26.Числовые характеристики двумерных с. в.

11.27.Неравенство Чебышева.

11.28.Теорема Чебышева (закон больших чисел).

11.29.Центральная предельная теорема.

11.30.Локальная и интегральная формулы Муавра–Лапласа.

11.31.Выборка. Статистические ряды.

11.32.Эмпирическая функция распределения. Гистограмма и полигон частот.

11.33.Числовые характеристики выборки.

11.34.Точечные оценки параметров распределения.

11.35.Метод моментов (Пирсона), метод максимального правдоподобия на-

хождения точечных оценок.

11.36.Интервальные оценки. Вероятность попадания в интервал.

11.37.Распределение Хи – квадрат (Пирсона). Распределение Стьюдента.

11.38.Доверительный интервал для математического ожидания с. в., имею-

щей нормальное распределение при известной и неизвестной дисперсии.

11.39.Понятие статистической гипотезы.

11.40.Схема статистической проверки гипотезы.

11.41.Понятия линейной регрессии. Построение регрессионных прямых.

11.42.Линейная корреляции.

Варианты заданий

ВАРИАНТ 1

Условие

 

Варианты ответа

п/п

 

 

 

 

 

 

1

В урне имеются два красных, пять синих и три белых шара.

1.

1 9

2.

4 9

 

Найти вероятность того, что одновременно извлеченные

 

 

 

 

 

два шара окажутся синими

3.

2 9

4.

5 9

 

 

 

 

2

Вероятности попадания каждого из трех стрелков в ми-

1. а) 0,092,

б) 0,994

38

 

шень соответственно равны 0,8, 0,7, 0,9. Стрелки произве-

2.

а) 0,091,

б) 0,993

 

ли один залп. Найти вероятность: а) только одного попа-

3.

а) 0,092,

б) 0,993

 

дания; б) хотя бы одного попадания

 

 

4.

а) 0,091,

б) 0,994

3

Имеются 2 одинаковые урны. В первой урне 3 черных и 7

 

 

 

 

 

белых шаров, а во второй – 4 черных и 6 белых. Наудачу

1.

0,528

 

2. 0,538

 

выбирается одна урна, и из нее наугад вынимается один

 

 

 

 

 

шар. Пусть выбранный шар – белый. Какова вероятность

3.

0,521

 

4. 0,534

 

того, что он вынут из первой урны?

 

 

 

 

 

 

4

Вероятность попадания мечом в кольцо при одном попа-

1.

0,5179

 

2. 0,5181

 

дании равна 0,7. Найти вероятность того, что в 5 бросани-

 

 

 

 

 

ях будет не менее четырех попаданий в кольцо

3.

0,5284

 

4. 0,5282

5

В блоке используются 4 конденсатора двух типов по два

 

 

 

 

 

каждого типа. Вероятность отказа в течение гарантийного

1.

0,821

 

2. 0,775

 

срока для первого типа равна 0,1; для второго – 0,3. Найти

 

 

 

 

 

среднее квадратичное отклонение случайной величины Х

3.

0,745

 

4. 0,779

 

– числа отказа конденсаторов

 

 

 

 

 

 

 

6

Непрерывная случайная величина задана функцией рас-

 

D(X ) 1,35,

p 0,542

 

 

 

0, x 0,

 

 

 

1.

 

пределения F x

 

216 x3 , 0 x 6 ,

 

 

D(X ) 1, 25,

p 0,512

 

1

 

2.

 

 

 

1,

x 6.

 

 

 

3.

D(X ) 1,35,

p 0,512

 

 

 

 

 

 

 

 

 

Найти дисперсию случайной величины, вероятность того,

4.

D(X ) 1, 25,

p 0,542

 

что в результате испытания случайная величина X при-

 

 

 

 

 

 

мет значение из интервала (2; 5)

 

 

 

 

 

 

 

 

 

 

 

 

7

По данным 10%-го выборочного обследования дисперсия

1. Больше в 1-м турагентстве

 

средней зарплаты

работников первого

туристического

 

2.

Больше во 2-м турагентстве

 

агентства равна 225, а второго – 100. Численность сотруд-

 

3.

Одинакова в двух агентствах

 

ников первого турагентства в 4 раза больше, чем второго.

 

4.

Оценить результат невозможно

 

Оценить ошибку выборки

 

 

 

 

 

 

 

 

 

 

 

8

Из генеральной совокупности извлечена выборка объема 50:

1.

5,76

 

2. 1

 

варианта

хi

2

5

7

10

 

 

 

 

 

 

 

 

 

частота

ni

16

12

8

14.

 

3.

0,48

 

4. 4,8

 

Определить несмещенную оценку генеральной средней

 

 

 

 

 

 

9

Генеральная совокупность имеет нормальное распределе-

1.

(13,87; 14,13)

 

 

ние признака, среднее квадратическое отклонение которо-

2.

(13,05; 14,95)

 

 

го равно 5, и при объеме выборки 25 выборочная средняя

 

 

 

 

 

 

 

равна 14. Найти доверительный интервал для оценки с

3.

(13,525; 14,475)

 

надежностью 0,95 неизвестного математического ожида-

4.

(12,04; 15;96)

 

 

ния нормально распределенного признака

 

 

 

 

 

 

 

 

10

Данные 5 наблюдений

 

 

 

 

1.

Y 0,2X 1,02

Х

1,00

1,50

3,00

4,50

5,00

 

2.

Y 0,202X 1,024

 

Y

1,25

 

1,40

1,50

1,75

2,25.

 

 

3.

Y 10,2X 0,24

 

Определить вид выборочного уравнения прямой линии

 

4.

Y 1,024X 0,202

 

регрессии Y на X на основании этих наблюдений

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВАРИАНТ 2

 

 

 

 

 

 

 

Условие

 

 

 

Варианты ответа

п/п

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

В урне 10 шаров, среди которых 2 красных, 5 синих и 3

1. 0,4

 

2. 0,8

 

белых. Найти вероятность того, что наудачу вынутый шар

 

 

 

 

 

будет цветным

 

 

 

 

 

 

3. 0,6

 

4. 0,7

2

Четыре охотника договорились стрелять по дичи в опре-

1. а) 0,29,

б) 0,0194

 

деленной последовательности: следующий охотник про-

2. а) 0,29,

б) 0,0192

 

изводит выстрел лишь в случае промаха предыдущего.

 

 

 

 

 

39