Конспект лекций по математике для студентов инженерно-технических специальностей. В 3 ч. Ч. 2
.pdf
|
|
|
|
|
|
|
|
aA1 B1b |
|
|
m(b a) , |
|
|
|
||
aA2 B2b |
|
M (b a). |
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(9.9) |
|
, |
|
|
y |
A2 |
|
|
|
|
|
|
|
|
|
|
|
|
aABb |
|
|
|
|
|
|
B2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B |
|
|
|
|
|
|
|
|
|
|
|
|
A |
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
m |
A1 |
|
|
|
B1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 . 3 . |
|
|
||
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
||
|
|
0 |
a |
|
|
|
b |
|
1 |
dx |
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
I |
|
. |
|
|
|
|||||
|
|
|
|
|
9.7 |
|
|
|
|
1 |
x4 |
|
|
|
||
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|||
|
|
|
|
. |
1 1 x4 |
2 |
0 x 1; |
|
1 |
1 |
1, . |
. m |
1 , |
|||
|
|
|
|
|
|
|
|
|
|
|
|
2 |
1 |
x4 |
|
2 |
M |
1, |
b |
a |
1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
I |
1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
11. |
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
f (x) |
|
|
, |
g(x) |
|
|
|
|
[ ; ], g(x) 0, m |
M |
|||
|
|
|
|
|
|
|
|
f (x) |
[ |
; |
] , |
|
|
|
|
|
|
|
|
|
|
m g( x) dx |
f ( x) g( x)dx M g(x)dx. |
|
|
||||||||
|
12. |
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
f (x) |
|
|
|
|
|
|
[ ; |
] , |
|
|
|
[ |
; |
], |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f (x)dx |
f ( |
)( |
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
. . |
|
|
|
|
[ ; ] |
( |
) |
|
. |
. |
, |
|
|
f (x) |
[ ; ] |
|
m |
|
. |
: m f (x) M , |
x [ ; ] , |
10 |
: |
|
m(

) 
f (x)dx
M (

).



0, 



f (x)dx
m 

M .
f (x)dx



,
f (x) . 














[
;
]
f (x) 
















, 





m
M ,
, |
[ ; ] |
, |
f ( ) |
. |
, |
|
|
f (x)dx |
|
|
|
|
|
f ( ) |
|
, |
|
|
|
(9.10) |
|
|
|
|
|||
f (x)dx
f (
)(

).
22
|
f ( ) , |
|
|
|
|
|
(9.10), |
|
|
|
|
|
|
|
|
|
f (x) |
|
[ ; |
] . |
|
|
|
y |
y f (x) |
|
B |
|
12 |
|
, |
f (x) 0, |
x [ ; ], |
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
. |
9.8. |
|
|
f ( |
)( |
) |
A |
f ( |
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
( |
) |
f ( |
), |
|
0 |
|
|
|
|
x |
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. 9.8 |
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
aABb . |
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
||
13. |
|
|
|
|
|
. |
|
|
|
|
|
|
f (x) |
|
|
, |
g(x) |
|
|
[ ; ] |
g(x) 0 , |
||
|
|
|
( |
; |
) , |
|
|
|
|
|
|
|
|
|
f (x) g(x)dx f ( ) |
g(x)dx. |
|
|
|
||||
14. |
|
|
|
|
|
. |
|
|
|
|
|
|
f 2 (x) |
g 2 ( x) |
|
|
[ ; ] , |
|
|
|
|
||
|
|
|
f (x) g(x)dx |
f 2 (x)dx g 2 (x)dx . |
|
|
|
||||
15. |
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f (x) |
|
, |
f (x)dx 2 f (x)dx. |
|
|
f (x) |
||
|
|
|
|
|
|
|
0 |
|
|
|
|
, |
f (x)dx |
0. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
16.
















. 






, 
f (x
A)
f (x) , 
x |
A |
|
I |
f (s)ds |
x . |
|
x |
|
17. |
f (x) |
[ ; ] , |
x
(x) 
f (t)dt
f (x),
.
.
x |
|
(x) ( f (t)dt) |
f (x), x [ ; ]. |
18. |
|
(x) |
(x) |
|
x |
[ , ] |
f (t) |
( |
) t |
( ) , |
|
|
|
|
( x) |
|
|
|
|
|
|
f (t)dt |
f ( (x)) (x) |
f ( (x)) (x) . |
|
||
|
( x) |
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x2 |
|
|
|
9 . 4 . |
: I (x) |
e t 2 dt . |
I (x). |
|
|
|
|
|
|
0 |
|
|
|
. |
|
|
18 |
, |
(x) 0 , . . |
( x) 0, |
I (x) e ( x 2) 2 |
(x 2 ) |
2xe x 4 . |
|
|
|
|
24
9.3.























9.3.1.



















































(





(9.7)).
e2
9 . 5 . 




e
dx . x ln x
e2



.
e
dx |
e2 |
d (ln x) |
|
|
|
e2 |
|
|
|
|
ln |
|
ln x |
|
ln(ln e2 ) ln(ln e) ln 2 0,69. |
|
|
|
|||||
x ln x |
e |
ln x |
|
|
|
e |
|
|
|
||||||
9 . 6 . |
|
|
6 |
|
|
|
dx |
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
1 |
|
|
|
3 x |
|
|
|
|
|
|
|
|||
6 |
|
dx |
6 |
|
1 |
|
|
|
|
|
|
|
6 |
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|||||||||
. |
|
|
|
|
(3 x) |
|
d (3 x) 2 3 x |
|
|
2( 9 |
4) 2. |
||||||||
|
|
|
|
2 |
|||||||||||||||
|
|
|
|
||||||||||||||||
1 |
|
3 x |
1 |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
9.3.2. 


|
9.5. |
f (x) |
[ |
; ] , |
x |
(t) |
|
[t1 , t2 ], |
([t1 ,t2 ]) [ ; ] |

(t1 ) 
,
(t2 ) 
, 










|
t2 |
|
|
f (x)dx |
f ( (t)) |
(t)dt. |
(9.11) |
|
t1 |
|
|
25






. 

F (x) 












f (x) 




[
;
] . 




(t1 ) 
,
(t2 ) 
, 







t2 |
t2 |
f (x)dx F ( ) F ( ) F ( (t2 )) F ( (t1 )) d ( (t)) |
F ( (t)) (t)dt |
t1 |
t1 |
t2
f (
(t))
(t)dt .
t1
(9.11)
.















x 
(t) , 



dx 

(t )dt , 

(t)



,







t , 







(t1 ) 


(t2 ) 
.
9 . 7 . |
R |
|
|
|
R2 x2 dx . |
||
|
0 |
|
|

.
x
R sin t , 




, 


x 



0
R ,
t




0 
. 

2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R |
|
|
|
2 |
|
|
2 |
|
R2 2 |
||||
|
|
|
|||||||||||
|
R2 |
x2 dx |
R2 R2 sin2 t R costdt R2 cos2 tdt |
|
|
|
(1 cos 2t)dt |
||||||
|
2 0 |
||||||||||||
0 |
|
0 |
|
0 |
|
|
|||||||
R |
2 |
t |
sin 2t |
|
|
2 |
|
R |
2 |
|
|
|
|
. |
|||||||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
2 |
|
2 |
|
0 |
4 |
|
|
|||
|
|
|
|
|
|
|
|
|
||




, 

























,








.
26
9.3.3. |
|
|
|
|
u(x) |
v(x) |
|
|
[ ; ] |
x . |
d (uv) udv vdu. |
|
|
|
[ |
; ] |
|
|
|
|
d (uv) |
udv |
vdu. |
(9.12) |







, 




d (uv)
uv .






, 


(9.12) 




udv uv |
vdu . |
(9.13) |
|
|
|
(9.13)
|
. |
9 . 8 . |
x sin xdx . |
|
0 |
. x sin xdx |
xd ( cos x) x( cos x) |
( cos x)dx |
|
|
0 |
|
|
|
0 |
0 |
0 |
x cosx |
sin x |
|
( cos |
0 cos 0) (sin |
sin 0) |
. |
|
0 |
|
0 |
|
|
|
|
|
|
|
|
27
9.4. 




















, 















:
1)









a
b 







;
2)










f
x





;b





























.












.





















, 
















.













.
9.4.1. 






(




)
f
x











a;
. 















a;b
, a
b.
b
lim f (x)dx ,
b
a
f x |
; |
f (x)dx . |



, 





b
f (x)dx |
lim f (x)dx . |
(9.14) |
|
a |
b |
a |
|
|
|
||
28
, |
f (x)dx |
. |












, 



,
f (x)dx 



.
|
|
f x |
( ;b] : |
b |
|
b |
|
f (x)dx |
lim f (x)dx . |
(9.15) |
|
|
a |
a |
|
|
|
|
|
f x |
; |
, |
f (x)dx , |
|
c |
|
; . |
f ( x)dx |
f ( x)dx |
f ( x)dx, c |
|
|
|
c |
|
|
|
c |
|
b |
|
f ( x)dx |
lim f ( x)dx |
|
lim f ( x)dx . |
(9.16) |
|
|
a |
a |
b |
c |
|
|
|
|
|
||



,




. 























, 
f (x)dx 









.
29
(9.14)
(9.16)





.




























, 













. 




,
f (x)dx 




f (x)dx F (x) |
F ( ) F (a) , |
(9.17) |
a |
a |
|
F (
) 






lim F (b) .
b
(9.17) 


, 















,











F (b) 
b 
.
|
|
|
9 . 9 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dx |
, |
R . |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 x |
|
|
||||
|
|
|
. |
|
|
|
1. |
|
|
|
|
|
dx |
|
limln x |
|
b |
|
lim(ln b |
ln1) |
. |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
1 x |
|
|
b |
|
|
1 |
|
b |
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dx |
lim b |
dx |
lim |
x1 |
|
b |
lim |
|
|
1 |
|
(b1 |
1) |
, |
|
|
|
|
|
1, |
||||||||
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
1 x |
x |
|
|
1 |
1 |
|
|
|
|
|
|
|
1. |
||||||||||||||||
1 |
b |
1 |
|
b |
|
|
|
|
|
|
, |
|
|
|
|||||||||||||||
|
|
|
|
b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
dx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
, |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
1. |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
1 x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
9 . 1 0 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dx |
. |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
x2 |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
30
