Конспект лекций по математике для студентов инженерно-технических специальностей. В 3 ч. Ч. 2
.pdf











, 
















t0
T . 







max
tk 
0 














S ,
.
.
|
n |
T |
S lim |
v( pk ) tk |
v(t)dt . |
0 |
k 1 |
t 0 |
9.2.4. 








.
|
b |
|
|
9.1. |
f (x)dx |
, |
f x |
a




a;b
.
|
, |
, |
|
|
a;b , . . |
|
, |
. |
|
9 . 1 . |
, |
1, |
x - |
; |
f (x) |
x - |
0;1 . |
0, |
|



. 












0;1














k
[xk 1 ; xk ], 



n |
n |
n 
f (
k )
xk 
1
xk
1.
k 1 |
k 1 |
k ,
n |
n |
n 
f (
k )
xk 
0 
xk
0.
k 1 |
k 1 |
11
|
, |
n |
0;1 |
|
|
|
|
|
, |
0, |
, |
1. |
, |
|
|
|
, . . |



, 






.



.
9.2. |
f x |
a;b , |
b












,
.
. 




f (x)dx.
a



, 














.



9.3. 




f
x










a;b








, 






















,





.
9.2.5. 
















. 


























,
.
.
f (x)dx |
f (t)dt |
f (s)ds ... |
(9.3) |




,














.
f
x
, 













.
x0 














, 




x 










, 



.
12
|
|
|
x, |
|
(x) : |
x |
x0 |
const |
|
|
|
|
|
|
|
|
|
(x) |
f (x)dx |
, |
|
(9.3): |
|
x0 |
x |
[ ; ] |
|
|
|
|
|
x |
x0 |
const |
|
|
|
|
|
|
|
|
|
(x) |
f (t)dt |
. |
(9.4) |
|
|
x0 |
x |
[ ; ] |
|





, 






, 













, 

x 














(


















), 







.
(9.4)
. |
(x) , |
f (t)
0 , 





















. 9.5 








.
|
|
|
|
|
|
(x) |
x, |
y |
f (x) |
. . |
|
||||
|
|
y |
|
||||
|
|
. |
|
||||
|
|
|
|
|
B |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
A |
|
|
(x) |
|
|
9.4. |
|
|
|
|
|
||||
|
|
|
|
|
f |
x |
|
|
|
|
|
|
|
||
|
|
|
|
|
|
x |
|
0 |
|
|
x |
|
|||
|
|
|
|
||||
|
|
|
. 9.5 |
|
|
|
|
|
|
|
|
|
|
, |
|



:
d x
f (t)dt
f (x) .
dx x0






. 





f
x




. 





. 9.6.
13
y
y f x |
f |
, |
x |
x , 














.
|
|
|
|
|
|
|
|
|
|
|
|
x |
f , |
|
|
|
|
|
|
|
x x |
f |
|
|
|
|
|
0 |
x0 |
|
x |
x x |
|
|
|
|
|
|
|||
|
|
|
|
. 9.6. |
|
|
x |
x |
x . |
|
f |
f (x |
) , |
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
x |
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
||
|
x |
0 , |
x |
x |
|
|
|
|
|
|
|
||
(x) lim |
|
lim f (x ) f (x) , |
|
x |
|||
x 0 |
x 0 |
||
|












.

9.4 


, 


















x
f (t)dt 























f
x

x0 |
|
|
|
|
|
|
|
|
x |
a;b . |
, |
|
9.2, |
f (t)dt |
|
|
|
|
x0 |
x. |
|
, |
9.4 |
|
f.



:
|
x |
|
f (x)dx |
f (t)dt C , |
(9.6) |
|
x0 |
|

C









.
(9.6) 













.
14
|
9.2.6. |
|
|
, |
(x) |
f (x) |
a;b , |
|
|
f (x) |
|

, 


, 

























.


F (x) 
















f (x) 







a;b
.
(x)
F (x)




, 



x
f (t)dt
F (x)
C ,
x
[
;
], C
R .
x 





, 

, 














,
.
.
x
0
F (
)
C; C 
F (
),
F (t)dt
F (x)
F (
),
x
[
,
].















x 
, 



(9.3) 



f (x)dx F ( ) F ( ) , |
(9.7) |
.
.

, 









. 


(9.7) 















,
|
|
: |
|
[ ; ] |
|
f (x) |
|
, |
x |
x |
. |
15



F (
)
F (
) 









(9.7) 







:
F (x) .







:
|
|
f (x)dx F (x) |
F ( ) F ( ) , |
(9.8) |
||
f ( x)d x |
|
( F( x) C) |
|
( F( ) |
C) ( F( ) C) |
F ( ) F ( ) . |
|
|
|||||
, |
|
|
|
|
|
. |




, 












,







.
1 |
|
|
1 |
3 |
|
1 |
3 |
3 |
|
|
|
||
|
x |
1 |
0 |
|
1 |
|
|||||||
9 . 2 . x2 dx |
x2 dx |
|
|
|
|
|
. |
||||||
|
|
3 |
|
0 |
|
3 |
|
3 |
|
||||
0 |
|
|
0 |
|
3 |
||||||||
(9.8) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|




.

,







, 






















.









, 



. 



, 



(9.7) 





, |
|
. |
f (x) F (x) , |
(9.7) |
: |
|
F (x)dx F ( ) |
F ( ) , |
16
.
. 






























.
9.2.7. 




1. |
( |
) , |
: |
f (x)dx 0 . |
|





.
2. |
f (x) 1 , |
dx |
. |






. 


f (x)
1, 
def |
n |
n |
|
dx lim |
1 xk |
xk |
. |
0 |
k 1 |
k 1 |
|
3.










:
f (x)dx 

f (x)dx .
, |
3 |
|
|
. |
3 |
|
|
: |
f (x)dx |
f (x)dx |
|
, |
. |
|
, |
xk |
xk xk 1 |
n |
x0 x1 ... xn |
(






xk
0 ).
17
4.




:
c
f (x)dx
c
f (x)dx,
c
R .






.
|
def |
n |
|
|
n |
c f ( x) dx |
lim |
cf ( |
k ) xk |
c lim |
f ( k ) xk c f (x)dx . |
|
0 |
k 1 |
|
0 |
k 1 |
5. |
|
|
|
|
|
[ ; |
] |
|
f1(x), f 2 (x),..., fn (x) |
||






:
( f1 (x)
f2 (x)
...
fn (x))dx 
f1 (x)dx 
f2 (x)dx
... 
fn (x)dx.
|
|
|
|
. |
|
. |
|
4 5 |
: |
f1 (x) |
f2 ( x) |
|
[ ; ] , |
|
c1 f1(x) c2 |
f2 (x), |
c1 , c2 R, |
|
[ ; ] |
(c1
f1 (x)
c2
f2 (x))dx
C1
f1 (x)dx
C2
f2 (x)dx.
6. 
















.
|
f (x)dx |
f (x)dx , |
f (x)dx |
, , : |
|
18
f (x)dx 
f (x)dx 
f (x)dx .






.








[
;
] 














k . 








|
|
|
|
|
. |
|
xm , . . |
|
|
|
|
[ ; ] |
[ ; ] [ ; |
] ([ ; x1 ] |
[x1 ; x2 ] ... |
[xm 1 ; xm ]) ([xm ; xm 1 ] ... [xn 1 ; ]). |
|
n |
|
m |
n |
|
|
|
f ( k ) xk |
f ( k ) xk |
|
f ( k ) xk . |
|
k |
1 |
k 1 |
k |
m |
|
|
|
|
max |
xk |
0, |
f (x)dx 
f (x)dx 
f (x)dx.
|
|
|
6 |
|
, |
|
|
|
[ |
; |
] |
|
|
[ |
; ] [ |
; |
]. |
7. |
f (x) 0 , x [ ; ] , |
f ( x)dx 0 , |
. |
||
|
. |
f ( k ) |
0 |
xk |
0, |
n
f (
k )
xk
0 . 






















k 1
n |
|
def |
lim |
f ( k ) xk |
f (x)dx 0. |
0 k |
1 |
|
8. 
















.
19
f (x) 
(x)
f (x) |
(x), |
x [ ; ], |
f (x)dx |
(x), |
. |
. |
f (x) |
(x) 0, |
x [ ; ], |




5
7 


( f (x)
(x))dx 
f (x)dx 
(x)dx
0 
f (x)dx 
(x)dx.
9. |
|
|
|
f (x)dx |
|
f (x) |
|
dx. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
8. |
|
|
|
|
f (x) |
|
f (x) |
|
f (x) |
|
, x [ ; ], |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
f (x) |
|
|
f (x)dx |
|
|
f (x) |
|
|
f (x)dx |
|
|
|
f (x) |
|
dx. |
|||||||||||
|
dx |
|
|
|
dx |
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10. 














.

m
M 






f (x) , 









[
;
] , 
m( ) f (x)dx M ( ), |
. |
(9.9) |
|
. |
|
m f (x) |
M , x [ ; ]. |
|
8 |
|
, |
m dx |
f (x)dx M dx. |
|
2, dx |
, |
, m( |
) |
f (x)dx M ( |
). |
|
|
|
10 |
, |
f (x) 0, |
x
[
;
], 



. 9.7.
20
