Конспект лекций по математике для студентов инженерно-технических специальностей. В 3 ч. Ч. 2
.pdf
(L)
(












)




:
(L) |
y |
( x), x a,b , |
b
l 
dl 

1
(
x )2 dx ,
( L ) a


(x) 















a, b
, (
. 12.1);
Y
(L)
y (x)
0 a |
|
b |
X |
|
|
|
|
||
|
. 12.1 |
|
|
|
(L) |
|
|
(t), |
(t), t [t1 ,t2 ], |
(t), (t) |
t1 ,t2 |
|
, |
|
t 2
l 
dl 

(xt ')2
( yt ')2 dt ;
( L ) t1

(L) 




















r
r
, 

,
, r
















,
, 
l 

r 2
(rx ')2 d
;
131
|
|
|
(L), |
|
|
(t), |
(t), |
z z t , |
t [t1 ,t2 ], |
(t), |
(t), z z t |












[t1 ,t2 ] 


:
|
t2 |
2 |
2 |
|
2 |
|
l |
dl |
xt |
yt |
zt |
dt . |
(12.2) |
L |
t1 |
|
|
|
|
|
(


) (D)
|
|
|
b |
|
|
S |
ds |
dxdy |
[ 2 (x) |
1 (x)]dx , |
(12.3) |
(D ) |
(D ) |
|
a |
|
|
Y
y |
2 |
x |
|
y |
1 (x), |
y |
2 (x), |
x a, |
x b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( |
. 12.2), |
|
|
|
|
|
|
D |
|
|
|
|
|
. |
|
|
|
a |
|
|
b |
X |
|
|
(D) |
|
|
, |
y |
1 x |
|
|
|
|
|
|
|
|
|
|
|
. 12.2 |
|
|
: |
(t), |
(t), |
t |
[t1 ,t2 ], |
|
|
|
|
|
|
, |
|
x a, |
x |
b , |
|
x(t1 ) |
a, x(t2 ) b, |
y(t) |
0 |
|
|
|
|
|
|
|
|
|
|
|
t2 |
y(t) x'(t)dt . |
|
|
|
|
|
|
|
|
|
S |
|
|
|
|
||
|
|
|
|
t1 |
|
|
|
|
|
|
r
r

D
(D) (






r (
. 12.3)) 



. 12.3
132
|
|
S |
1 |
r 2 |
d . |
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Z |
|
|
|
|
|
|
|
|
|
(Q), |
|
|
|
|
Q |
|
|
|
|
|
|
|
|
|
||
|
|
|
z |
x, y , |
|
x, y D , |
|
|
x, y |
||||
|
|
|
|
|
|
|
|||||||
|
|
Y |
|
|
|
|
|
|
D |
|
|
|
( . 12.4), |
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
(D) |
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. 12.4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q |
dq |
1 ( |
x |
)2 |
( |
y |
)2 |
ds |
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
(Q ) |
( D ) |
|
|
|
|
|
|
|
|

































.




(V) 


















, 













. 






(12.1)
V |
dV |
dxdydz . |
|
(V ) |
(V ) |
Z |
|
|
, |
|
|
|
|
|
|
||
|
|
Q |
(Q), z |
x, y , |
|
|
|
|
|
OZ, |
|
|
|
|
|
|
|
|
|
|
Y |
OXY |
(D) |
0 |
|
|
|
||
(D) |
( . 12.5), |
|
|
||
X |
|
|
|||
. 12.5 |
|
|
|
||
|
|
|
|
|
|
V 

x, y
ds .
D



(V) 























S(x)
, |
( |



),




:
133
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V |
|
S x dx , |
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
a, |
x |
b |
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
||||
Y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y |
|
f x |
B |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Bb, |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
A |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y f (x) , |
|
|
|
|
X |
|
|
|
|
x a, x b |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
a |
|
|
|
|
b |
|
|
|
|
X |
( |
|
|
|
|
|
. 12.6), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b |
|
|
|
|
|
|
|
|
|
|
|
. 12.6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V |
|
|
[ f (x)]2 dx . |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a |
|
|
|
|
|
|
|
||
|
|
|
|
1 2 . 1 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
||
x y 2 |
1, |
x |
5 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
y 2 |
1 |
|
|
|
x |
5 |
( |
. 12.7). |
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
B |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
y 2 |
1, |
|
y |
0, |
|
|
|
|
|
A (1; 0 ) |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A |
|
|
|
|
5 |
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ox . |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
y2 |
|
1, |
x |
5 |
|
|
|
|
|
|
|||||||||
|
|
|
C |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x 5 : |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
. 12.7 |
|
|
|
|
|
|
|
B (5;2), |
C (5; |
2) . |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
(12.3), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
5 |
|
|
x 1 |
5 |
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
5 |
|
|
|||||||
|
S |
|
dxdy |
|
dx |
|
|
|
dy |
|
y |
|
x 1 |
|
dx |
( x |
1 |
|
x |
1)dx 2 x 1dx |
||||||||||||||||||
|
|
|
|
|
|
x 1 |
||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
( D ) |
|
1 |
|
|
|
x 1 |
1 |
3 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
1 |
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
2 (x |
1) |
|
5 |
4 (5 1) 2 |
|
(1 |
1) 2 |
|
10 2 . |
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
1 |
3 |
|
|
|
|
|
|
|
|
3 |
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134
1 2 . 2 . |
x t, y |
2 |
t 2 , z |
1 |
t 3 |
|
2 |
3 |
|||||
|
|
|
|
(0
t
1) .
|
|
. |
|
|
x |
t |
1, y |
t |
t |
2, z |
t |
t 2 , |
|
(12.2) |
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
t2 |
|
|
|
|
|
|
|
|
1 |
|
|
|
|
1 |
|
t |
3 |
|
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
l |
dl |
|
(x |
')2 |
( y |
')2 |
(z |
')2 dt |
|
|
1 2t2 |
t4 dt |
(1 t2 )dt |
t |
|
|
|
1 |
. |
|||||
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
t |
|
t |
|
t |
|
|
|
|
|
|
|
|
|
|
3 |
|
|
3 |
|||
|
(L ) |
t1 |
|
|
|
|
|
|
|
0 |
|
|
|
|
0 |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
12.3.



(
) 











,
.
.


. 




















(P)d






(
), 













(P) 

P 






:
M 
(P)d
.
, |
( ) |
, |
a,b |
, |
|
|
b |
b |
|
|
M |
(P)dx |
(x)dx , |
|
|
|
a |
a |
|

(
) 




(L) , 
M 
(P)dl ,
( L )

(
) 







(D), 
135
|
|
M |
(P)ds |
(x, y)dxdy , |
(12.4) |
|
|
|
( D ) |
( D ) |
|
( |
) |
(Q), |
|
|
|
|
|
|
M |
(P)dq , |
|
|
|
|
(Q ) |
|
|
( |
) |
|
( |
) V, |
|
|
|
M |
(P)dv |
(x, y, z)dxdydz . |
(12.5) |
|
|
(V ) |
|
(V ) |
|



, 








, 






















.





,
m, 







(

, 



)














(

, 



).











, 












(
)
M x 
y
(P)d
,
(
)
M y 
x
(P)d
.
(
)












(
) 
















Y,
Z,
YZ 

















136
M xy 
z
(P)d
,
(
)
M xz 
y
(P)d
,
(
)
M yz 
x
(P)d
.
(
)
|
M y |
|
x (P)d |
|||
xc |
( ) |
|
, |
|||
|
|
|
|
|||
M |
|
|
|
|||
|
|
|
(P)d |
|||
|
|
( |
) |
|
|
|
|
M x |
|
|
y (P)d |
||
yc |
( ) |
|
|
, |
||
M |
|
|
|
|||
|
|
|
(P)d |
|||
|
|
( |
) |
|
|
|
|
M yz |
|
x (P)d |
|||
xc |
( ) |
|
, |
|||
M |
|
|
|
|||
|
|
|
(P)d |
|||
|
|
( |
) |
|
|
|
|
M xz |
|
|
y (P)d |
||
yc |
( ) |
|
|
, |
||
M |
|
|
|
|||
|
|
|
(P)d |
|||
|
|
( |
) |
|
|
|
137
|
M xy |
|
z (P)d |
|
zc |
( ) |
. |
||
M |
|
(P)d |
||
|
|
|
||
|
|
( ) |
|
|
(
(P) = const) 








,




, 






























. 



o











, 










, 
















, 








.











m 









(I |
, I |
Y) |


, 






:
I |
0 |
md 2 |
, I |
x |
m y 2 |
z 2 , I |
xy |
mz 2 |
, |
|
|
|
|
|
|
|
d



















.













c
(D) 













I x 
y2
(P)d

y2
(x, y)dxdy ,
( ) |
( D ) |
I y 
x2
(P)d

x2
(x, y)dxd .
( ) |
( D ) |
I xy 
z2
(P)d


z2
(x, y, z)dxdydz ,
( ) |
(V ) |
138
I xz 
y2
(P)d


y2
(x, y, z)dxdydz ,
( ) |
(V ) |
I yz 
x2
(P)d


x2
(x, y, z)dxdydz .
( ) |
(V ) |








,



.


n.







I




. 











:
Io 
(x2
y2 )
(x, y)d
;
(
)
Io 
(x2
y2
z2 )
(x, y, z)d
.
(
)
1 2 . 3 . |
R, |

,



















,






.



. 



|
, |
|
|
2 2 R 2 . |
|
|
P , |
|
|
|
|
d |
2 2 , |
||

,
k 
2 
2 , 
k 














.




(12.4) 

m 
k 
2
2 dxdy , 
S 


2 
2
R 2 .
s
139














, 



2 |
R |
2 |
3 |
|
|
|
kR3 |
|
|
2 |
|
|
|
m |
d k d k |
|
|
|
R |
d |
|
2 |
k R |
3 |
. |
||
|
3 |
|
0 |
3 |
|
0 |
3 |
|
|||||
0 |
0 |
0 |
|
|
|
|
|
|
|
|
1 2 . 4 . 



R 



















.


. 







v
4
R3 ,
|
|
3 |
3 |
. |
, |
|
||
4g R3 |
||
2 |
2 z 2 R 2 . |
|

























:
I |
( 2 |
2 |
z2 )dxdydz |
|
r 4 sin |
|
drd |
d |
||||||
o |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
v |
|
|
|
|
|
v |
|
|
|
|
|
|
||
2 |
|
sin d |
R |
4 |
|
2 2 |
R5 |
3 P |
2 |
. |
||||
|
d |
r |
|
dr |
|
|
|
|
|
R |
|
|||
|
|
|
|
|
|
|
||||||||
0 |
0 |
|
0 |
|
|
5 |
|
5 g |
|
|
||||


, 



















, 


, 


, 

Oz:
|
|
|
|
2 |
|
R |
I |
z |
( 2 |
2 )dxdydz |
r 4 sin 2 r 2 sin drd d |
d sin 3 d |
r 4 dr |
|
|
|
|
|
|
|
|
v |
|
v |
0 |
0 |
0 |
2 |
R 5 |
(1 cos2 )d (cos ) |
2 |
R 5 |
(cos |
1 |
cos3 ) |
|
0 |
2 |
|
|
R 2 . |
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|||||||
|
5 0 |
|
|
5 |
|
3 |
|
5 g |
|
|||||
|
|
|
|
|
|
|
||||||||
140
