Конспект лекций по математике для студентов инженерно-технических специальностей. В 3 ч. Ч. 2
.pdf
a, n dq |
X cos dq |
|
Y cos dq |
Z cos dq |
|
|
(Q ) |
|
(Q ) |
(Q ) |
(Q ) |
|
|
|
|
|
|
|
|
(11.7) |
|
X (x1 ( y, z), y, z)dydz |
|
Y (x, y1 (x, z), z)dxdz |
Z (x, y, z1 (x, y))dxdy, |
||
D |
yz |
|
D |
xz |
D |
|
|
|
|
xy |
|
||
(Dxy), (Dxz), |
(Dyz) |
|
|
Q |
oxy, oxz, oyz |
|
|
. |
x x1 ( y, z) , |
y y1 (x, z) , |
z z1 (x, y) |
||
|
|
F (x, y, z) 0 |
(Q) |
|
||
x, y, z 





.
1 1 . 2 . |
|
|
( y2 z2 ) cos dq , |
(Q) |
|
|
|
(Q ) |
|
|
|
|
|
|
z 1 x2 , |
z = 0, y = 0, y = 1 |
|||
(
. 11.4).



. 



(Dxy) 




(Q) 




oxy






:
1
x
1, 0
y
1. 



(11.7) 


|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
1 |
|
1 |
|
|
|
|
|
|
|
|
|
y 2 |
|
|
z 2 cos |
dq |
|
|
|
|
|
y 2 |
1 |
x2 |
dxdy |
|
|
dx |
|
y 2 1 |
|
x2 dy |
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
(Q ) |
|
|
|
|
|
|
|
|
|
|
(Dxy ) |
|
|
|
|
|
|
|
|
|
|
1 |
|
0 |
|
|
|
|
|
|
|
|||||||
1 |
|
|
|
y3 |
|
|
2 |
|
|
1 |
|
|
1 |
|
|
1 |
|
|
|
|
2 |
1 |
4 |
|
|
2 |
|
4 |
|
x3 |
|
|
1 |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
dx |
|
|
|
y |
x |
|
|
y |
|
|
|
|
|
dx |
|
|
|
1 x |
|
|
|
|
x |
|
dx |
|
x |
|
|
|
|
|||||
|
|
3 |
|
|
3 |
|
|
|
3 |
|
|
3 |
|
|
|
|
||||||||||||||||||||||
1 |
|
|
|
|
|
|
|
|
|
|
|
0 |
|
1 |
|
|
|
|
|
1 |
|
|
|
|
3 |
|
|
1 |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
4 |
1 |
4 |
1 |
8 |
2 |
|
2. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
3 |
3 |
3 |
3 |
3 |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
121
z
n (P)
y
0 |
1 |
x |
. 11.4 |
11.6. |
|
|
|
|
|
|
|
|
|
||
|
|
|
|
- |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
(L) |
|
|
|
|
|
|
|
|
|
|
(D), |
|
. |
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
. |
(L) |
|
- |
|
, |
|
|
|
(D) |
|||||
|
|
|
|
( |
. 11.5). |
|
|
|
|||
11.2. |
( |
|
|
|
|
- |
). |
(L) |
- |
||
- |
|
|
|
|
|
, |
|
|
OXY |
||
|
|
|
|
(D), |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
||
|
a(P) X (x, y)i Y (x, y) j |
|
|
|
|
||||||
|
|
X / |
y |
|
|
Y / x , |
|
(D) |
|
|
|
X ( x, y)dx Y ( x, y)dy |
|
Y |
|
X |
dxdy . |
(11.8) |
|
x |
|
y |
|||
( L) |
( D) |
|
|
|
||
|
|
|
|
|
122
J2 |
|
|
Y (x, y) |
dxdy . |
|
|
|||
|
|
|
|
|
|||||
|
( D) |
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
J1 |
|
|
J2 , |
|
|
|
|
|
|
X ( x, y)dx Y ( x, y)dy |
|
|
Y |
|
X |
dxdy . |
|||
|
|
x |
|
||||||
( L) |
|
|
|
( D) |
y |
||||
|
|
|
|
|
|
|
|||
y
m
(L)
A |
B |
(D)
n
x
0 |
a |
b |

. 11.5
11.7. 










. 




















.
11.7.1. 










2 









(MN )C(V ) , 
M 





N 

















; (V)
(
. 11.6),
124
a
a(P) .







2:
|
|
|
|
|
|
|
|
|
|
( N ) |
||||
|
a |
, |
|
dl |
|
a |
, |
|
dl |
|
a |
, |
|
dl . |
( L ) |
( MCN ) |
( M ) |
||||||||||||
C
M
N
B

. 11.6



, 


















(MN),
|
|
|
|
|
|
|
|
|
, . . |
|
a, |
dl |
|
a, |
dl . |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( MBN ) |
|
|
|
|
MCN |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
u |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
dl 0 |
|
|
, |
|
|
|
, |
|
dl 0. |
|
a, |
|
|
|
dl |
|
|
a |
|
|
|
a |
|
dl |
a |
|
||||||||
(MBN) |
|
|
|
|
|
|
|
(MCN) |
|
|
(MBN) |
|
(NCM) |
|||||||||||
, |
|
|
|
|
|
|
|
0 , |
(L) |
|
|
, |
||||||||||||
|
|
|
|
a |
, |
|
|
dl |
|
|
||||||||||||||
( L )



(V). 




















.


11.1. 











(V) 
2
, |
, |






(V),



.













: 













2 











, 





(V), 











2 















.
125
|
|
11.7.2. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
||||
|
|
(L) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
a X (x, y)i Y (x, y) j . |
|
|||||||||||||
|
, |
(L) |
|
|
|
|
|
|
|
|
|
|
|
|
|
(D), |
|
|
|
|
X (x, y) |
Y (x, y) |
|
|
|
|
|
|
|
|
|
X / y |
Y / x |
|
|||||||
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11.3. |
X (x, y) , Y (x, y) , |
X / |
|
y , |
Y / |
x |
|
|||||||||||
|
|
|
(D) |
, |
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
2 X (x, y)dx Y (x, y)dy |
|
|
|
|
|
||||||||||||
|
|
|
( L) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
(L) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y |
|
|
X |
|
|
|
|
|
|
|
|
(11.9) |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
y |
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
(D) |
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
- |
|
. |
|
|
|
|
. |
, |
|
|
|
|
|
|
|
|
|
X (x, y)dx Y (x, y)dy 0 , |
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
( L) |
|
|
|
|
|
|
|
|
Y / x X / y |
|
|
|
|
|
|
|
|
|
M 0 |
|
D , |
, |
, |
||||||
Y (M0 ) / |
x |
X (M 0 ) / |
y 0 ( . 11.7). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(D1) |
|
|
(L1), |
|
|
|
|
0: |
|
|
|
|
Y |
|
X |
dxdy |
0 . |
|
|
|
|
||||
|
|
|
|
|
|
|
x |
|
|
|
|
|
||||||||
|
|
|
|
( D1 ) |
|
y |
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
L1 
D1
M 0
D
L
. 11.7 |
126 |
|
(11.8), 









(D1)



(L1), 







(D).
11.7.3. 




, |
(11.9) |
|
|
|
|
, |
|
|
X (x, y)dx Y (x, y)dy |
|
|
|
|
|
|
u(x, y): |
|
|
|
|
|
|
|
|
du(x, y) |
X (x, y)dx |
Y (x, y)dy , |
|
(11.10) |
||
X (x, y) u(x, y) / x ; Y (x, y) |
u(x, y) / y . |
|
|
|
|
|
|
, |
|
|
(11.9) |
|
|
||
|
|
u(x,y) |
|
|
|||
|
|
|
. |
|
|
||
|
|
|
(11.10) |
|
, |
||
|
(11.9) |
2 |
|
|
|
|
, |
. . |
|
|
|
|
|
|
|
(N ) |
|
( N ) |
|
|
N |
|
|
X ( x, y)dx Y ( x, y)dy |
du(x, y) |
u(x, y) |
|
u(N ) |
u(M ) . |
||
|
|||||||
(M ) |
|
(M ) |
|
|
M |
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
||






, 
N(x, y)
|
( N ) |
|
u(N ) u(x, y) |
X (x, y)dx Y (x, y)dy c . |
(11.11) |
|
(M ) |
|
|
(L) |
(M0KN) c |



, 












, 
M0(x0, y0) 









,
127
(D); N(x,y)
(
. 11.8).
y
N(x, y)
M0(x0, y0)
K(x, y0)
0 |
x |

. 11.8



, 








(M0K) 



y = y0, 

dy = 0.







(KN) 







x = const,
.
. dx = 0. 





,
N |
|
|
|
|
|
|
|
|
X (x, y)dx Y (x, y)dy |
X (x, y)dx Y (x, y)dy |
X (x, y)dx Y (x, y)dy |
||||||
M 0 |
|
|
( M 0K ) |
|
|
|
|
( KN ) |
( x, y ) |
( x, y ) |
|
x |
y |
|
|||
|
0 |
|
|
|
|
|
||
|
X (x, y)dx |
Y (x, y)dy |
|
X (x, y0 )dx |
|
Y (x, y)dy. |
||
( x , y ) |
( x, y ) |
|
x |
0 |
y |
0 |
|
|
0 |
0 |
0 |
|
|
|
|
||







(11.11) 



x |
|
y |
|
u(x, y) |
X ( x, y0 )dx |
Y ( x, y)dy c . |
(11.12) |
x 0 |
|
y0 |
|
, |
|
(11.12) |
|











y, 

















x.



















(D), 




M0 





(0, 0). 





(11.12) 




128
|
|
|
|
|
|
x |
|
|
|
y |
|
|
|
|
|
|
u(x, y) |
X (x,0)dx |
Y (x, y)dy |
c . |
(11.13) |
||||||
|
|
|
|
|
|
0 |
|
|
|
0 |
|
|
|
|
|
1 1 . 3 . |
|
|
|
|
|
|
u(x,y) |
|
|
|
|
du |
4(x2 y2 )xdx |
4(x2 |
y2 ) ydy . |
|
|
|
|
|
|
|
|||
|
|
. |
|
|
|
|
|
|
|
(11.9) |
|
|
|
OXY: |
X (x, y) 4(x 2 y 2 )x ; |
Y (x, y) |
4(x 2 |
y 2 ) y , |
x / y |
8 yx , |
|||||||
y / |
x |
8xy . |
|
|
|
|
(11.13): |
|
|
|
|||
|
|
|
x |
|
y |
|
|
|
x |
|
y |
|
|
|
|
u(x, y) |
4x2 xdx 4 |
(x2 |
y2 ) ydy 4 |
x3 dx 4 (x2 y y3 )dy |
|
||||||
|
|
|
0 |
|
|
0 |
|
|
|
0 |
|
0 |
|
|
|
|
4 |
x4 |
4 |
x2 y 2 |
|
y 4 |
|
x4 |
2x2 y 2 |
y 4 c . |
|
|
|
|
|
2 |
4 |
|
|
||||||
|
|
|
4 |
|
|
|
|
|
|
||||
129
12. 





12.1. 












, 






. 



















, 


,








,
















. 













,




, 


, 







,














.
12.2. 

















, 




(
) ( l
b
a 














a,b
, l 





(L), s 











(D), q 









(Q), v




(V)) 


d . |
(12.1) |


, 













a,b



(12.1) 







b
l 
dx
b
a .
a
130


X 
X 
X
X
y