Конспект лекций по математике для студентов инженерно-технических специальностей. В 3 ч. Ч. 2
.pdf
|
2 |
1 |
|
R 3 |
5 |
|
||||||
|
|
|
|
|
|
|
|
8 |
R |
|
. |
|
2 |
|
cos 2 |
d cos |
r 2 dr |
2 |
|||||||
5 |
||||||||||||
0 |
|
|
|
0 |
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
||||
10.7. 


|
|
|
|
|
|
- |
L |
( . . 10.2). |
|
|
|
|
|
l. |
|
|
lk , k |
|
|
|
|
||
L |
|
1, n |
. |
|
|
|
|
max lk . |
|
|
|
|
|
L |
|
f (N ), N |
L . |
|
|
|
|
|
|
|
|
|
|
|
f (N ) |
L |
|
|
|
|
n |
|
|
|
|
|
S n |
|
|
f ( N k ) |
lk . |
|
|
|
|
|
k 1 |
|
|
|
|
, |
|
|
|
|
, |
, |
0, |
|
|
|
|
f (N ) |
|
L |
|
|
|
n |
f (N )dl |
lim |
f (Nk ) lk . |
L |
0 i |
1 |
L
R2 ,
f (N )
f (x, y) 
f (N )dl 
f (x, y)dl .
L L

L
R3 ,
f (N )
f (x, y, z) 
101
f (N )dl 
f (x, y, z)dl ,
L L
dl 













L.
















. 




























dl 







L.
1. 

L
R2 





















y 
(x),
x
[a,b] . 









, 

(x)




[a, b]. 




dl 

1
(
(x))2 dx .
|
b |
|
|
|
|
|
|
(x) 2 dx . |
|
||
f (x, y)dl |
f (x, (x)) 1 |
(10.1) |
|||
L |
a |
|
|
|
|




, 
L 






x 
( y), y
[
, d ], 




( y)








[c,d], 
|
d |
|
|
f (x, y)dl |
f ( ( y), y) 1 ( ( y))2 dy . |
||
L |
c |
||
2. 

L 






x |
x t , |
|
y |
y t , |
t t1 ,t2 , |
102
x t , y t |
t1 ,t2 . |


L 


dl 

(x
(t))2 
y
(t)
2










t:
|
t 2 |
|
|
|
f (x, y)dl |
f (x(t), y(t)) (x (t))2 ( y (t))2 dt . |
(10.2) |
||
L |
t1 |
|
||
L 










, 











x |
x t , |
|
y |
y t , |
|
z |
z t , |
t t1 ,t2 , |
x t , y t , z t |
|
t1 ,t2 , |
|
|
t 2 |
|
|
f (x, y, z)dl |
f (x(t), y(t), z(t)) (x (t))2 ( y (t))2 (z (t))2 dt . |
||
L |
t1 |
||
3. 







L 




















(
) ,
[ , ], |
( ) |
, |
, |
dl 


2 
2 d
.
103
10.8. 








R 3 (
. 
. 10.4).



. 

k , k
1, n , 











. 
















f (N )
f (x, y, z) 













n |
n |
Sn 
f (Nk )
k 
f (xk , yk , zk )
k .
k 1 |
k 1 |

0.







, f
x, y, z



n
f N d
f x, y, z d
lim f xk , yk , zk
k ,
0 k 1














, d

















.











, 






,
.
.

,


. 


























0xy ,
Dxy 












. 












z 
(x, y) .
f (x, y, z)d



















Dxy 




106
|
|
z 2 |
2 |
|
||
|
|
z |
|
|||
f x, y, z d |
f x, y, x, y 1 |
|
|
|
dxdy . |
(10.4) |
|
|
|||||
Dxy |
|
x |
y |
|
||
dS




, 
d

, 









n1 cos
n2
0xy . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
z |
|
z |
|
|
|
|
|
|
|
|
1 |
|
|
|
n |
, |
, 1 , |
n |
2 |
(0,0,1) , |
cos |
|
|
|
|
, |
|||||
|
|
|
|
|
|
|
|
|||||||||
1 |
|
x |
y |
|
|
|
|
z |
2 |
2 |
|
|||||
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
1 |
|
z |
|
|||
|
|
|
|
|
|
|
|
|
|
x |
|
y |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
z 2 |
2 |
||
|
|
z |
|||
d |
1 |
|
|
|
dS . |
x |
|
||||
|
|
y |
|||
y 
(x, z)
Dxz









0xz , 
|
|
y 2 |
y |
2 |
||
f ( x, y, z)d |
f ( x, ( x, z), z) 1 |
|
|
|
dxdz . |
|
x |
z |
|||||
Dxz |
|
|
||||
x 
( y, z)
Dyz |
0 yz , |
|
|
x |
2 |
x |
2 |
|
|
|
|||
f ( x, y, z)d |
f ( ( y, z), y, z) 1 |
|
|
|
dydz . |
y |
|
z |
|||
Dyz |
|
|
|
107
|
1 0 . 1 1 . |
|
R2 |
|
|
x2 |
y 2 d , |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
z |
|
R2 x2 y 2 ( |
. 10.23). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
z |
|
|
|
x |
||||||
|
|
z |
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R2 |
x2 y 2 |
|||||||
|
|
|
R |
|
|
z |
|
|
|
y |
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
R2 |
x2 |
|
y 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
-R |
R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y |
1 |
|
x2 |
|
|
|
|
|
|
|
|
|
y 2 |
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
d |
|
|
|
|
|
|
|
|
|
|
|
dxdy |
||||||||||
|
|
|
|
|
|
R2 |
x2 |
|
y 2 |
R2 |
|
|
x2 |
y 2 |
||||||||||||||
|
x |
. 10.23 |
|
|
|
|
|
|
|
|
Rdxdy |
|
|
|
|
|
|
|
|
|||||||||
|
|
Dxy |
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
R2 |
|
x2 |
|
y 2 |
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||




(10.4)
|
|
|
|
|
Rdxdy |
|
R dxdy R R2 R3 . |
R2 x2 y 2 d |
R2 x2 y 2 |
|
|||||
|
|
|
|
||||
|
|
R2 x2 y 2 |
|||||
|
Dxy |
|
|
|
|
Dxy |
|
108
11. 









11.1. 














. 




















, 
















(
),
|
|
|
i, j, k |
P(x, y, z) |
( |
) . |
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a( p) a(x, y, z) X (x, y, z) i |
Y (x, y, z) j |
Z |
(x, y, z)k , |
(11.1) |
|||||||||
(
),


(
). 


X (x, y, z) , Y (x, y, z) , Z (x, y, z) a( p) 







.
( ) |
|
|
, |
|
|
|
|
b( p) , |
( ). |
||
, |
|
||




, 





















.


(L) 











, 

















. 







(L) 














b( p)
( p) , |
|
( |
. 11.1, ) ( |
, |
). |
|
(L) |




.
(Q)





, 

























,



,



;
109




. 














b( p)





(Q) 














n
( p) , 












, 













,
(
. 11.1,
) (




(Q) 







,
).
) |
z |
|
( p) |
n ( p) |
|
||||
|
z |
|||
|
|
) |
||
|
p |
|
|
P |
|
y |
y |
|
|
|
0 |
|
0 |
x |
|
x |
|
|
|
|
|
. 11.1 |











.
11.2.
























.
|
( ) |
|
|
a( p) , |
p ( ) . |
. |
|
|
|
1. |
|
|
|
|
b( p) |
( |
|||
|
( |
) = (L) |
||
( |
) = (Q)). |
|
||
110
























:

5(ln8
ln 4) 

5 ln 2.


. 

















2

cos
)



(10.3)

2
sin
) 
2

2