Конспект лекций по математике для студентов инженерно-технических специальностей. В 3 ч. Ч. 2
.pdf














-
3 




2




2006


:
. . |
|
, |
. . |
, |
. . |
|
, |
. . |
, |
|
. . |
|
, |
. . |
, |
. . |
, |
. . |
, |
. . |
|
, |
|
. . |
|
|
|
|
|
|
|
. . 




: |
. . |
, |
. . |




: 











. .


© 
, 2006
2
9. |
|
|
....................................................................................................... 4 |
||||
9.1. |
, |
|
|
|
................................................. 4 |
||
9.2. |
|
|
............................................................................................................. 8 |
||||
9.3. |
|
|
|
|
.................................................... 25 |
||
9.4. |
|
|
........................................................................................................ 28 |
||||
9.5. |
|
|
|
|
|
........................... 37 |
|
10. |
|
|
|
|
( |
, |
, |
|
|
|
I |
|
) .................................................................... |
|
78 |
10.1. |
|
|
, |
|
|
|
........... |
|
............................................................................................................................................ |
|
|
|
|
|
78 |
10.2. |
|
|
|
|
|
................................... 83 |
|
10.3. |
|
. |
. |
.......................................................................... 84 |
|||
10.4. |
|
|
|
|
|
................. 87 |
|
10.5. |
|
. |
. |
|
..................................................................... 90 |
||
10.6. ...................................... |
|
|
|
( |
) |
|
94 |
10.7. |
|
|
|
............................................................................ 101 |
|||
10.8. |
|
|
|
|
.......................................................... 106 |
||
11. |
|
|
|
|
|
|
............. 109 |
11.1. |
|
|
. |
|
|
.................................. 109 |
|
11.2. |
|
|
|
|
. |
.............................. |
|
............................................................................................................................... |
|
|
|
|
|
|
110 |
11.3. |
|
|
|
|
. |
|
|
........................................................ |
|
|
|
|
|
|
112 |
11.4. |
|
|
|
|
...................................................... 115 |
||
11.5. |
|
|
|
|
....................................................... 119 |
||
11.6. |
|
|
|
|
...................................................................... 122 |
||
11.7. |
|
|
|
|
|
|
. |
|
|
|
|
|
. |
|
..... |
..................................................................................................... |
|
|
|
|
|
|
124 |
12. |
|
|
|
|
|
|
130 |
12.1. |
|
..................................................................................................................... 130 |
|||||
12.2. |
|
|
|
|
|
........................... 130 |
|
12.3. |
|
|
|
|
|
............................ 135 |
|
12.4. |
|
|
|
|
|
|
............ 141 |
13. |
|
................................................................................................................................... 143 |
|||||
13.1. |
|
...................................................................................................................... 143 |
|||||
13.2. |
|
...................................................................................................................... 147 |
|||||
13.3. |
|
|
|
......................................................................... 155 |
|||
13.4. |
|
|
|
|
.......................................................... 166 |
||
14. |
|
|
.................................................................................... 173 |
||||
14.1. |
|
|
............................................................................................ 173 |
||||
14.2. |
|
|
.......................................................................................... 178 |
||||
14.3. |
|
|
.............................................................................................................. 180 |
||||
3
9.









9.1.

, 















9.1.1.
















|
|
|
, |
, |
|
|
y f x , |
a;b , |
x a, |
x |
b, y 0 ( . 9.1) |
y |
|
|
|
|
y |
f |
x |
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
a |
|
|
|
|
|
|
|
||
|
|
|
|
|
|
b |
|
||||
|
|
|
|
. 9.1 |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
. |
|
|
|
|
|
||
|
|
|
a;b |
|
|
|
|||||
x0 a x1 ... |
xn b. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xi 1 , xi |
|
i 1, n |
|
|
pi . |
||||
|
|
|
|
|
|
|
|
|
|
||
xi |
xi 1 |
xi i |
1, n , |
max xi (1 i n) |
. |
||||||
|
|
|
|
, |
|
|
|
|
|
, |
|
|
, |
|
|
|
|
|
|
|
[xi 1 , xi ] |
f (x) |
|



.
4
|
|
|
|
|
|
, |
|
|
|
f ( pi ) |
xi |
|
|
y |
f (x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
x |
xi 1 , |
x |
xi |
( |
. 9.2). |
|
|
xi 1 |
pi |
xi |
|
|
|
|
|
n |
f ( pi ) |
xi |
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
i 1 |
|
|||
|
|
. 9.2 |
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( |
. 9.3). |
|
|
|
|
|
, |
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
0 x0 |
a p1 |
x1 |
p2 |
x2 |
xi 1 |
pi |
xi |
|
. 9.3 |
|
xn 1 |
pn |
b |
x |
x |
|
n |
|||||
|
|
|
|

, 









|
n |
lim |
f ( pi ) xi , |
0 |
i 1 |
|









a;b




xi 





pi (i
1, n).
9.1.2. 













M 



















v
f (t).








, 







M 









t0
5
T . |
[t0 ,T ] |
n |
[t0,t1 ], [t1 ,t2 ], ..., [tn 1 ,T ] |
|
t k tk tk 1 tn T . |
tk
f (tk ) , 
tk 







t
tk 1 ;tk
. 







, 












,
f (tk ) tk . |
f (tk ) tk , |














, 














t0
T:
n
Sn 
f (tk )
t k .
k 1








, 














:
|
|
n |
|
|
S lim |
f (tk ) tk , |
(9.1) |
|
0 |
k 1 |
|
max tk |
k 1, 2,...,n . |
|
|
, |
|
|
(9.1) |
v f (t) |
t0 ,T . |
|
|
|
|
|
. |
9.1.3. 



















. 












( 




, 





















),
, 





, 


















a;b






.






.
6

,







.



.
, |
[a;b] |




x




a;b
:
( x) lim |
([a, b] |
O ( x)) |
. |
([a;b] |
|
||
0 |
O (x)) |
||
|
|
|
|


[a,b]
O (x) 









O (x), 
x
]a, b[ , 







( |
), |
x a |
x b . |
, |


([a;b]
O (x))


([a;b]
O (x))


















a;b
, 











O (x),
|
|
|
|
X |
, |
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
a;b |
|
|
|
|
|
|
|
|
|
|
|
... xn 1 xn |
b. |
[xi |
1 , xi ] (i |
|
|||||
x 0 |
a |
x i |
|
1, n) |
|
|||||||
|
|
|
|
|
|
|
|
|
|
max xi |
||
|
|
|
pi . |
xi xi 1 |
xi |
i |
|
1, n |
, |
|
|
|
(1 |
i |
n ) |
. |
|
( |
|
|
|
|
|
|
|
|
|
|
), |
, |
|
|
|
|
xi 1 , xi |
|||
|
|
|
. |
, |
( pi ) |
xi |
|
|
|
|||
|
|
|
|
xi 1 , xi . |
, |
|
|
|
n |
( pi ) xi |
||
|
|
|
|
|
|
i 1 |
||||||
|
|
|
|
|
|
|
|
|
|
|
||

























. 







, 











.
7
|
n |
lim |
( pi ) xi , |
0 |
i 1 |














a;b




xi 





pi (i
1, n) 








.
9.2.









9.2.1.















, |
, |
, |



, 












:
1. |
a;b |
y f x . |
2. |
|
a;b |
x 0
a
x1
...
xn
b .
3. |
xi 1 , xi |
|
|
pi (i 1, n) . |
4. |
n |
|
n |
|
|
f ( pi )(xi xi 1 ) |
f ( pi ) xi , |
|
|
|
i 1 |
|
i 1 |
|
n- |
|
|
y f x |
a;b , |












x0
a
x1
...
xn
b.
5. 









|
n |
lim |
f ( pi ) xi , |
0 |
i 1 |



max
xi , 1
i
n .
|
|
. |
9.1. |
f |
a;b . |
( |
) |
f |
a;b |
|
|
|
|
8 |
|
n |
lim |
f ( pi ) xi , |
0 |
i 1 |

0
a;b |
[xi 1 , xi ] |
pi [ xi 1, xi] (i 1, n) . |
b |
def |
n |
|
f (x)dx |
lim |
f ( p i ) x i. |
(9.2) |
a |
0 |
i 1 |
|
|
|
||
|
|
, |
f x |
a;b
(











).
f x dx |
, f x |
, x 











, 


a
b



















.


: 













, 





,







, 






.



,



.
: |
f x |
a;b |

,

















F(x)+C 







f
x




a;b
.






, 



















:
) 


, 






a;b
;
) 


, 






a;b
























;
9
) 












a;b



.
9.2.2. 








|
(9.2) |
|
|
|
, |
|
, |
, |
|
, |
, |
|
. |
|
|
|
, |
(9.2) |
, |
X, |



+
(
. 9.4), 







, 






X, 





:
a
f ( x)dx
S1 S2
S3 .
b
y
|
S1 |
|
S3 |
|
|
|
|
|
+ |
|
+ |
0 |
a |
_ S2 |
x |
b |
|||
|
|
. 9.4 |
|
9.2.3. 





v t , t0 t |
T. |
t k tk tk 1 |
v( pk ) tk , |
n |
|
pk [tk 1 ;tk ]. |
v( pk ) tk |
k |
1 |
10
