Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дорожная климатология в вопросах и ответах.pdf
Скачиваний:
1
Добавлен:
24.11.2025
Размер:
4.63 Mб
Скачать

 

 

 

 

 

 

 

 

 

Видимость

 

 

 

 

 

 

 

 

 

плохая.

 

 

 

 

 

 

 

 

 

 

 

Исключительно

 

 

 

 

 

 

 

 

 

высокие

волны

 

 

 

 

 

 

 

 

 

(максимальная

 

 

 

 

 

 

 

 

 

высота — до 16

 

 

 

 

 

 

 

 

 

м, средняя

 

 

 

 

 

 

 

 

 

11,5 м). Суда

 

 

 

 

 

 

 

Большие

 

небольшого

и

 

 

 

 

2

 

 

разрушения

 

среднего размера

 

 

 

Жес

 

 

на

 

временами

 

 

11

 

8,5

10

56–

 

 

 

 

токий

значительном

скрываются

из

 

 

 

шторм

3—117

63

пространстве.

вида.

Море

всё

 

 

 

32,6

 

 

 

 

 

 

 

 

 

Наблюдается

 

покрыто

 

 

 

 

 

 

 

 

 

очень редко.

 

длинными

 

 

 

 

 

 

 

 

 

 

 

белыми

 

 

 

 

 

 

 

 

 

 

 

хлопьями

пены,

 

 

 

 

 

 

 

 

 

располагающим

 

 

 

 

 

 

 

 

 

ися

по

ветру.

 

 

 

 

 

 

 

 

 

Края

 

 

волн

 

 

 

 

 

 

 

 

 

повсюду

 

 

 

 

 

 

 

 

 

 

 

сдуваются

 

в

 

 

 

 

 

 

 

 

 

пену

 

 

 

 

 

 

 

 

 

 

Огромные

 

 

 

 

 

 

 

 

 

 

 

разрушения,

 

 

 

 

 

 

 

 

 

 

 

 

серьезно

 

Исключител

 

 

 

 

 

 

 

повреждены

 

 

 

 

 

 

 

 

 

ьно

 

плохая

 

 

 

 

 

 

 

здания,

 

видимость.

 

 

 

 

 

 

 

 

строения

и

 

 

12

 

Ура

>

>

 

Воздух наполнен

 

 

ган

32,6

117

> 64

дома, деревья

пеной

 

 

и

 

 

 

 

 

 

 

 

 

 

 

вырваны

с

брызгами.

Море

 

 

 

 

 

 

 

корнями,

 

всё

покрыто

 

 

 

 

 

 

 

растительност

 

 

 

 

 

 

 

полосами пены

 

 

 

 

 

 

 

ь уничтожена.

 

 

 

 

 

 

 

 

 

 

 

Случай очень

 

 

 

 

 

 

 

 

 

 

 

редкий.

 

 

 

 

 

15.33. Как оценивается ветер по скорости, направлению и повторяемости?

Направление ветра - один из показателей воздуха, это место начала ветра, а не его конца. Метеорологическое направление ветра указывается азимутом точки, откуда дует ветер; тогда как аэронавигационное направление ветра — куда дует, таким образом значения различаются на 180°.

Для измерения направления ветра используются разнообразные инструменты, подобные ветроуказателю и флюгеру. Оба этих инструмента работают, двигаясь при малейшем дуновении ветра. Таким же образом флюгер показывает преимущественное направление ветра — его хвостовая часть направлена в сторону, в которую дует ветер.

Современные инструменты, используемые для измерения скорости и направления, называются, соответственно, анемометром и флюгером. Эти типы инструментов используются в энергетической промышленности на основе энергии ветра, и оба служат для оценки ресурсов ветра и помощи в управлении турбинами.

177

В примитивных ситуациях, когда недоступны эти современные инструменты, человек может использовать свой указательный палец, чтобы проверить направление ветра. Это делается путём смачивания пальца и выставления его вверх. При этом с той стороны, откуда дует ветер, палец ощущает прохладу, которая обусловлена повышенной скоростью испарения влаги с кожи пальца из-за потока проносящегося рядом воздуха. Но эта техника «измерения пальцем» направления ветра не работает в слишком влажных или очень жарких климатических условиях. Такой же принцип используется для определения точки росы (при помощи психрометра, более точного инструмента, чем человеческий палец).

Скорость ветра

Типичным способом представления данных по ветрам служат атласы и карты ветров. Эти атласы обычно составляются для климатологических исследований и могут содержать информацию как о средней скорости, так и об относительной частоте ветров каждой скорости в регионе. Обычно атлас содержит средние за час данные, измеренные на высоте 10 м и усредненные за десятки лет. Для отдельных потребностей используются и другие стандарты составления карт ветра. Так, для нужд ветроэнергетики измерения проводят на высоте более 10 м, обычно 30-100 м, и приводят данные в виде средней удельной мощности ветрового потока.

Максимальная скорость ветра

Наибольшая скорость порыва ветра на Земле (на стандартной высоте 10 м) была зарегистрирована автоматической метеорологической станцией на австралийском острове Барроу во время циклона Оливия 10 апреля 1996 года. Она составляла 113 м/с (408 км/ч). Второе по величине значение скорости порыва ветра составляет 103 м/с (371 км/ч). Оно было зарегистрировано 12 апреля 1934 года в обсерватории на горе Вашингтон в НьюГемпшире. Над морем Содружества дуют самые быстрые постоянные ветры — 320 км/ч. Скорости могут быть большими во время таких явлений, как смерч, но их точное измерение очень тяжело и надежных данных для них не существует. Для классификации смерчей и торнадо по скорости ветра и разрушительной силе применяют Шкалу Фудзиты. Рекорд для скорости ветра на равнинной местности был зафиксирован 8 марта 1972 года на военно-воздушной базе США в Туле, Гренландия — 333 км/ч.

Градиент скорости ветра

Градиентом ветра называют разницу в скорости ветра на небольшом масштабе, чаще всего в направлении, перпендикулярном его движению. Градиент ветра разделяют на вертикальную и горизонтальную компоненты, из которых горизонтальная имеет заметно отличные от нуля значения вдоль атмосферных фронтов и у побережья, а вертикальная — у поверхности, хотя зоны значительного градиента ветра разных направлений также случаются в высоких слоях атмосферы вдоль высотных токовых течений. Градиент ветра является микрометеорологическим явлением, что имеет значение лишь на небольших расстояниях, однако он может быть связан с погодными явлениями мезо- и синоптической метеорологии, такими, как линия шквала или атмосферные фронты. Значительные градиенты ветра часто наблюдаются у обусловленных грозами микропорывов, в районах сильных локальных приповерхностных ветров — низкоуровневых струйных потоков, возле гор, зданий, ветровых турбин и судов.

Градиент ветра имеет значительное влияние на посадку и взлёт летательных аппаратов: с одной стороны, он может помочь сократить расстояние разбега самолёта, а с другой — усложняет контроль над аппаратом. Градиент ветра является причиной значительного количества аварий летательных аппаратов.

Градиент ветра также влияет на распространение звуковых волн в воздухе, что могут отражаться от атмосферных фронтов и достигать мест, которых иначе они бы не достигли, или наоборот. Сильные градиенты ветра препятствуют развитию тропических циклонов, но увеличивают продолжительность отдельных гроз. Особая форма градиента ветра — термальный ветер — приводит к образованию высотных струйных течений.

Повторяемость ветра оценивается при помощи розы ветров, которая характеризует направление ветра в данной точке за многолетний период наблюдений.

178

Рисунок -лучевая роза ветров

15.34. Что такое роза ветров?

Роза ветров (в большинстве языков она называется «Роза компаса»), — векторная диаграмма, характеризующая в метеорологии и климатологии режим ветра в данном месте по многолетним наблюдениям и выглядит как многоугольник, у которого длины лучей, расходящихся от центра диаграммы в разных направлениях (румбах горизонта), пропорциональны повторяемости ветров этих направлений («откуда» дует ветер). Розу ветров учитывают при строительстве взлётно-посадочных полос аэродромов, автомобильных дорог, планировке населенных мест (целесообразной ориентации зданий и улиц), оценке взаимного расположения жилмассива и промзоны (с точки зрения направления переноса примесей от промзоны) и множества других хозяйственных задач (агрономия, лесное и парковое хозяйство, экология и др.).

Роза ветров, построенная по реальным данным наблюдений, позволяет по длине лучей построенного многоугольника выявить направление господствующего, или преобладающего ветра, со стороны которого чаще всего приходит воздушный поток в данную местность. Поэтому настоящая роза ветров, построенная на основании ряда наблюдений, может иметь существенные различия длин разных лучей. То, что в геральдике традиционно называют «розой ветров» — с равномерным и регулярным распределением лучей по азимутам сторон света в данной точке (см. рисунок) — является распространённой метеорологической ошибкой; на самом деле это всего лишь географическое обозначение основных географических азимутов сторон горизонта в виде лучей.

15.35. Какие приборы используются для определения направления и скорости ветра?

Для определения направления ветра используется простейший прибор под название флюгер или ветроуказатель.

Флюгер представляет собой металлический флаг, расположенный на вертикальной оси и поворачивающийся под воздействием ветра. Противовес флага направлен в сторону, откуда дует ветер. Направление ветра может определяться по горизонтальным штифтам, ориентированным по восьми румбам, а на современных флюгерах — с помощью электронного прибора (энкодера).

На флюгере, перпендикулярно направлению ветра, может устанавливаться свободно качающаяся металлическая пластина (см. флюгер Вильда), по углу отклонения которой от вертикали определяется сила ветра. В современных флюгерах для определения силы ветра используется легкий пропеллер.

Ко́нус-ветроуказатель́ (в просторечии колду́нили колбаса)́— конус из ткани, предназначенный для указания направления и приблизительной скорости ветра. Используется главным образом в авиации, а также на химических заводах, где существует риск утечки газа. Располагается на летном поле аэродрома, открытых площадках, возвышенностях.

179

Метеорологическому направлению ветра соответствует направление, противоположное указываемому ветроуказателем. Аэронавигационное направление ветра соответствует направлению, указываемому ветроуказателем. Размер части ветроуказателя, расположенной горизонтально, пропорционален скорости ветра: при невысокой скорости часть ветроуказателя «провисает»; при высокой скорости ветра всё полотнище ветроуказателя расположено горизонтально.

Типичными приборами, предназначенными непосредственно для измерения скорости ветра, служат разнообразные анемометры, использующие способные вращаться чаши или пропеллеры. Для измерения с большей точностью, в частности для научных исследований, используют измерения скорости звука или измерения скорости охлаждения нагретой проволоки или мембраны под действием ветра. Другим распространенным типом является анемометров является трубка Пито, который измеряет разницу динамического давления между двумя концентрическими трубками под действием ветра и широко используется в авиационной технике.

Для исследования скорости ветров во многих точках используют зонды, скорость которых определяют с помощью ГЛОНАСС или GPS, радионавигации или слежения за зондом с помощью радара или теодолита. Другими методами является использование таких методов как содары, доплеровские лидары и радары, способные измерять доплеровский сдвиг электромагнитного излучения, отраженного или рассеянного аэрозольными частицами или даже молекулами воздуха. В дополнение, радиометры и радары используют воздух для измерения неравенства водной поверхности, что хорошо отражает приповерхностную скорость ветра над океаном. С помощью съемки движения облаков с геостационарных спутников можно установить скорость ветра на больших высотах.

15.36. Какие конструктивные особенности анемометров, анемографов, анерумбометров и энитрирумбометров?

Чашечный анемометр

Самый простой тип анемометров

— это чашечный анемометр. Он был изобретён доктором Джоном Томасом Ромни Робинсоном в обсерватории Армы, в 1846 году. Он состоял из четырёх чашек полусферической формы, насаженных на спицы ротора, вращавшегося на вертикальной оси.

Чашечный анемометр с вертикальной осью расположенный на Скаджит Бэй, штат Вашингтон. ИюльАвгуст, 2009.

Горизонтальный поток воздуха с любого направления вращал ротор со скоростью, соответствующей скорости ветра.

Робинсон считал, что для его анемометра линейная скорость движения чашек составляет одну треть

скорости ветра независимо от размера

Рисунок Чашечный анемометр чашек и длины спиц; отдельные

эксперименты того времени это подтверждали. На самом деле это неверно, т.н. "коэффициент анемометра" (обратная

180

Рисунок Тепловой анемометр
Рисунок Лопастной анемометр

величина) для простейшей конструкции Робинсона зависит от размеров чашек и спиц и лежит в пределах от двух до чуть более трёх.

Трёхчашечный ротор, предложенный канадцем Джоном Паттерсоном в 1926 году, и последующие усовершенствования формы чашек Бревортом и Джойнером в 1935-м сделали чашечный анемометр линейным в диапазоне до 100км/ч (27м/с) с погрешностью около 3%. Паттерсон обнаружил, что каждая чашка даёт максимальный вращающий момент, будучи повёрнутой на 45° к направлению ветра (?). Трёхчашечный анемометр отличается бóльшим вращающим моментом и быстрее отрабатывает порывы, чем четырёхчашечный.

Оригинальное усовершенствование чашечной конструкции, предложенное австралийцем Дереком Вестоном (1991), позволяет с помощью того же ротора определять не только скорость, но и направление ветра. Оно заключается в установке на одну из чашек флажка, из-за которого скорость колеса меняется в течение одного оборота (полоборота флажок движется по ветру, пол-оборота - против). Зная угол этой неравномерности относительно "статора" метеостанции, можно определить и направление ветра.

Лопастный анемометр

Ещё один анемометр — это лопастный. На английском — windmill anemometer, дословный перевод — мельничный анемометр.

C изменением направления ветра ось пропеллера должна ориентироваться в этом же направлении; для этих целей используются флюгер или устройство, его заменяющее. Для измерения скорости потока, не изменяющего своего направления, например, в воздуховодах шахтах и зданий, используются вертушки с жёстко закреплённой осью.

Однако в последнее время всё больше предпочитают использовать другие конструкции, без подвижных частей.

Тепловой анемометр

Представляет собой открытую тонкую нить накаливания (вольфрам, нихром и т.п.), нагретую выше температуры среды и охлаждаемую воздушным потоком. Сопротивление нити изменяется с температурой и определённым образом зависит от скорости ветра. В зависимости от схемы включения датчика различают приборы с фиксированным током через нить, фиксированным напряжением на нити и с фиксированной её температурой.

Конструкция имеет недостатки как очевидные (хрупкость), так и менее очевидные (нарушение градуировки из-за быстрого старения горячей проволоки), но в силу очень малой инерционности она широко применяются в аэродинамических

экспериментах для измерения локальной турбулентности и пульсаций потока. Часто изготовляются самими экспериментаторами.

Ультразвуковой анемометр

Принцип действия анемометров ультразвукового типа — в измерении скорости звука, которая изменяется в зависимости от направления ветра. Различают двумерные ультразвуковые анемометры, трехмерные ультразвуковые анемометры и термоанемометры. Двумерный анемометр способен измерять скорость и направление горизонтального ветра. Трехмерный анемометр проводит измерение первичных

181