Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дорожная климатология в вопросах и ответах.pdf
Скачиваний:
1
Добавлен:
24.11.2025
Размер:
4.63 Mб
Скачать

6.10 Когда и при каких обстоятельствах бывает равноденствие?

Различают весеннее и осеннее равноденствие. По всемирному времени (в других часовых поясах эти даты могут отличаться на сутки) в северном полушарии весеннее равноденствие происходит 20 марта (в предвисокосные годы 20 или 21 марта), когда Солнце переходит из южного полушария в северное, а осеннее равноденствие происходит 22 или 23 сентября, когда Солнце переходит из северного полушария в южное. В южном полушарии — наоборот, мартовское равноденствие считается осенним, а сентябрьское — весенним.

Вдни равноденствия на всей поверхности Земли (исключая районы земных полюсов) день почти равен ночи («почти»: в дни равноденствия на всей поверхности Земли день несколько больше ночи; причинами этого являются атмосферная рефракция, которая несколько «приподнимает» солнечный диск для наблюдателя, и тот факт, что долгота дня определяется как разность между моментами захода и восхода солнца, которые, в свою очередь, определяются по положению верхнего края солнечного диска относительно горизонта, в то время как равноденствие рассматривается относительно центра солнечного диска[3]). В дни равноденствия Солнце восходит почти точно на востоке (несколько севернее востока) и заходит почти точно на западе (несколько севернее запада).

Впериод, когда день длиннее ночи, приблизительно от весеннего до осеннего равноденствия, Солнце восходит севернее востока и заходит севернее запада (строго говоря, этот период начинается незадолго до весеннего равноденствия и оканчивается вскоре после осеннего равноденствия[3]), а в период, когда день короче ночи, который продолжается приблизительно от осеннего до весеннего равноденствия, Солнце восходит южнее востока и заходит южнее запада (строго говоря, этот период начинается вскоре после осеннего равноденствия и оканчивается незадолго до весеннего равноденствия).

Точки пересечения небесного экватора с эклиптикой называются точками равноденствий. Из-за эллиптичности своей орбиты Земля переходит от точки осеннего равноденствия до весеннего скорее, чем от точки весеннего до точки осеннего. Вследствие прецессии земной оси взаимное расположение экватора и эклиптики медленно изменяется; это явление называется предварением равноденствий. За год положение экватора меняется так, что Солнце приходит в точку равноденствия на 20 минут 24 секунды раньше, чем Земля завершает полный оборот по орбите. В результате меняется положение равноденственных точек на небесной сфере. От точки весеннего равноденствия ведётся отсчёт прямых восхождений по небесному экватору, долгот по эклиптике. Определение положения этой фиктивной точки на небесной сфере составляет одну из главных задач практической астрономии. Точки весеннего и осеннего равноденствий обозначаются символами зодиака, соответствующими созвездиям, в которых они находились во времена Гиппарха[6] (в результате предварения равноденствий эти точки сместились и ныне находятся, соответственно, в созвездиях Рыб

иДевы): весеннего равноденствия — знаком Овна ( ), осеннего равноденствия — знаком

Весов ( ).

Весеннее и осеннее равноденствия считаются астрономическим началом одноимённых времён года. Промежуток между двумя одноимёнными равноденствиями называется тропическим годом, который и принят для измерения времени. Тропический год составляет приблизительно 365,2422 солнечных суток, поэтому равноденствие приходится на разное время суток, передвигаясь вперёд каждый раз почти на 6 часов. Юлианский год заключает 365¼ суток. Вставной день високосного года возвращает равноденствие на прежнее число года. Но тропический год немного меньше юлианского, и равноденствие в действительности медленно отступает по числам юлианского

82

календаря. В григорианском же летоисчислении вследствие пропуска 3 дней в 400 лет оно почти неподвижно (григорианский год в среднем составляет 365,2425 суток).

6.11 Для чего служит гелиограф?

Гелиограф – это простейшее светосигнальное устройство, с помощью которого терпящий бедствие на суше или на море может послать отражение солнечного диска («солнечный зайчик») на достаточно удаленный предмет для своего обнаружения. Вспышки, посланные гелиографом, или, как его иногда называют, сигнальным зеркалом, в безоблачный солнечный день могут быть замечены пилотом самолета на расстоянии до 25 км. В лунные ночи гелиограф может давать отражение даже лунного света. Гелиограф состоит из двух металлических пластин или створок, скрепленных на шарнире в виде книжки размером 8 х 5 сантиметров. Поверхность одной из пластин с двух сторон хромирована и отполирована, другой – матовая. В зеркальной пластине точно в центре проделано визирное отверстие диаметром со спичечную головку. Для подачи сигналов створки следует раскрыть до упора, поднести зеркальную пластину к глазам и поймать в визирное отверстие самолет, которому подается сигнал (рис. а). Затем, для того чтобы «зайчик» достиг цели и на самолете заметили ваш сигнал, необходимо поворачивать гелиограф таким образом, чтобы солнечное пятнышко, прошедшее через визирное отверстие и отраженное от матовой створки на внутреннюю поверхность зеркальной створки в виде светлого кружка, совпало с визирным отверстием

6.12 Как изменяется продолжительность солнечного сияния в течение года?

Продолжительность солнечного сияния - такой же, только, может быть, реже упоминаемый метеорологический показатель, как температура воздуха, влажность, облачность, величина и продолжительность атмосферных осадков. Солнечное сияние - это освещенность земной поверхности прямыми лучами солнца, не закрытого от нас плотными облаками. Это часть потока солнечной энергии так и называется "прямой радиацией".

Прямую солнечную радиацию измеряют с помощью специального прибора, актинометра (буквально "лучемер"). Это небольшая труба, направленная строго на солнечный диск. есть и другой способ: измерив величину общей радиации, исключить из нее ту часть, которая обусловлена рассеянием, а для этого затенить приемник прибора, измеряющего величину всего потока солнечной энергии, который называется пиранометром.

Продолжительность солнечного сияния лучи солнца способны записать сами, если сфокусировать их на специально разграфленной по времени суток ленте, установленной в фокусе стеклянного шара. Прибор этот - гелиограф. Им снабжены все метеостанции мира. Устроен гелиограф просто: чугунная подставка, в которой крепится стеклянный шар и устанавливается лента, ориентируется в соответствии с географической широтой места, взаиморасположением стран света. Гелиограф стоит неподвижно, а солнце перемещается по небосводу, и его лучи, пройдя через стеклянный шар, оставляют на ленте черную прорезь прожога - дымящийся след своего движения по небу с момента восхода до заката.

Если солнце сияет весь день без перерыва, число часов солнечного сияния практически совпадает с продолжительностью светового дня. Так бывает в ясные дни. Но если хоть на десять минут меркло солнце, закрытое набежавшими облаками, прожог на ленте гелиографа прерывается. В конце дня можно подвести итог - сколько часов и минут поступал от солнца поток прямой радиации. Величина продолжительности солнечного сияния - важная характеристика погоды и климата, изменяющаяся в зависимости от географической широты (вслед за изменением длительности светового дня) и от условий

83

циркуляции атмосферы. смена воздушных масс, а вместе с ней облачности и степени прозрачности атмосферы то приближает реально наблюдающуюся продолжительность сияния солнца к возможной при идеальных условиях величине, то удаляет от нее.

В полярных областях суточная продолжительность солнечного сияния может составлять все 24 часа. Эффект круглосуточного дня поразителен - несмотря на частое ненастье летом, в Заполярье число часов солнечного сияния очень велико. Следствие этого - значительный суммарный приход лучистой энергии, не уступающий в летние месяцы экваториальным величинам. Годовая сумма этого тепла в районе Северного полюса втрое меньше, чем на экваторе, но месячные суммы в мае, июне, июле примерно одинаковы за счет большей продолжительности солнечного сияния.

Антарктида представляет в этом отношении один из замечательнейших парадоксов. На ледяной материк, несмотря на полугодовую полярную ночь, поступает в среднем за год около 120 килокалорий лучистой энергии, почти годовое поступление солнечного тепла в экваториальной зоне. В летние месяцы, при круглосуточном сиянии солнца, холодная Антарктида получает значительно больше тепла, чем экваториальные жаркие страны. Это объясняется большой прозрачностью атмосферы и близким соответствием реально наблюдающихся величин солнечной радиации идеально возможным. Иное дело, что белый щит ледяного покрова почти все это тепло отражает обратно в мировое пространство...

Метеорологи широко применяют этот показатель, который дает возможность представить, в какой степени используются солнечные ресурсы. Сравнивая отношение реальной продолжительности солнечного сияния к возможной в данном месте, можно выявить районы, особенно богатые солнцем.

Одно из самых солнечных мест на территории бывшего СССР - западный берег Крыма, где годовая продолжительность солнечного сияния превышает 3000 часов, а в июле в Севастополе не закрытый облаками солнечный диск господствует на небе в течение 356 часов. Это на несколько часов больше, чем восточнее - в Ялте и Алуште, и на 122 часа больше, чем в более южном черноморском городе Батуми. В то же время в заполярном Верхоянске, близ "полюса холода" северного полушария, продолжительность солнечного сияния в мае точно так же велика, как в Севастополе в июле. Лишь немного меньше она в июне и июле. Годовая сумма часов солнечного сияния в Верхоянске больше, чем в Батуми, и на 400-500 часов больше. чем в Москве.

Конечно, каждый год наблюдаются определенные отклонения (иногда значительные) от этих средних показателей. "Год на год не приходится" - эта истина справедлива и для продолжительности солнечного сияния.

7.Солнечная радиация.

7.1Что такое солнечная радиация?

Со́лнечнаярадиация́ — электромагнитное и корпускулярное излучение Солнца. Следует отметить, что данный термин является калькой с англ. Solar radiation («Солнечное излучение»), и в данном случае не означает радиацию в «бытовом» смысле этого слова (ионизирующее излучение).

Солнечная радиация измеряется по её тепловому действию (калории на единицу поверхности за единицу времени) и интенсивности (ватты на единицу поверхности). В целом, Земля получает от Солнца менее 0,5×10-9 от его излучения.

Электромагнитная составляющая солнечной радиации распространяется со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямой и рассеянной радиации. Всего Земля получает от Солнца менее одной двухмиллиардной его излучения. Спектральный диапазон электромагнитного

84

излучения Солнца очень широк — от радиоволн до рентгеновских лучей — однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.

Существует также корпускулярная часть солнечной радиации, состоящая преимущественно из протонов, движущихся от Солнца со скоростями 300—1500 км/с (см. Солнечный ветер). Во время солнечных вспышек образуются также частицы больших энергий (в основном протоны и электроны), образующие солнечную компоненту космических лучей.

Энергетический вклад корпускулярной составляющей солнечной радиации в её общую интенсивность невелик по сравнению с электромагнитной. Поэтому в ряде приложений термин «солнечная радиация» используют в узком смысле, имея в виду только её электромагнитную часть.

Солнечная радиация — главный источник энергии для всех физико-географических процессов, происходящих на земной поверхности и в атмосфере (см. Инсоляция). Количество солнечной радиации зависит от высоты солнца, времени года, прозрачности атмосферы. Для измерения солнечной радиации служат актинометры и пиргелиометры. Интенсивность солнечной радиации обычно измеряется по её тепловому действию и выражается в калориях на единицу поверхности за единицу времени (см. Солнечная постоянная).

7.2 Что такое солнечная постоянная и какое её численное значение?

Со́лнечнаяпостоя́нная — суммарныйпоток солнечного излучения, проходящий за единицу времени через единичную площадку, ориентированную перпендикулярно потоку, на расстоянии одной астрономической единицы от Солнца вне земной атмосферы. По данным внеатмосферных измерений солнечная постоянная составляет 1367 Вт/м², или

1,959 ка

7.3. Что подразумевается под энергетической освещенностью?

Энергетическая освещенность отношение потока излучения к площади облучаемой поверхности. Единица измерения энергетической освещённости — Вт/м2. Еэ характеризуется плотностью потока излучения, падающего на данную поверхность при одной и той же интенсивности излучения энергетическая освещенность может быть различной в зависимости от ориентации поверхности, на которую падает излучение.

Энергетическая освещенность (облученность), характеризует уровень облучения поверхности, на которую падает поток излучения, и распределение потока вдоль поверхности (рис. 2). Таким образом, это величина, определяющая поверхностную плотность потока:

,

где dA – элемент облучаемой поверхности; dФ – падающий на этот элемент поток. Очевидно, что если поток распределяется на поверхности равномерно, то:

,

где Ф – поток, падающий на всю поверхность.

85