- •ПЕРЕЧЕНЬ МАТЕРИАЛОВ
- •ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
- •ОГЛАВЛЕНИЕ
- •1 ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ
- •1.1 Логика высказываний
- •1.1.1 Понятие логического высказывания
- •1.1.2 Логические операции
- •1.1.3 Пропозиционные формулы
- •1.1.4 Тавтологии
- •1.1.5 Равносильные формулы
- •1.2 Булевы функции
- •1.2.1 Понятие булевой функции. Число булевых функций от n переменных
- •1.2.2 Элементарные булевы функции. Представление булевых функций пропозиционными формулами
- •1.2.3 Двойственные функции. Принцип двойственности
- •1.2.4 Совершенные конъюнктивные нормальные формы (СКНФ)
- •1.2.5 Полиномы Жегалкина
- •1.3 Полнота и замкнутость
- •1.3.1 Полные системы функций и замкнутые классы
- •1.3.2 Основные замкнутые классы
- •1.3.3 Теоремы о функциональной полноте
- •1.3.4 Базисы пространства булевых функций
- •1.4 Минимизация булевых функций
- •1.4.1 Постановка задачи
- •1.4.2 Метод Квайна-Макклоски
- •1.4.3 Карты Карно
- •1.5 Реализация булевых функций
- •1.5.1 Контактные схемы
- •1.5.2 Схемы из функциональных элементов
- •1.6 Предикаты
- •1.6.1 Основные понятия и определения
- •1.6.2 Операции над предикатами
- •1.6.3 Равносильные формулы логики предикатов
- •1.6.4 Приведенная форма и предваренная нормальная форма предиката
- •2 ОСНОВЫ ТЕОРИИ МНОЖЕСТВ
- •2.1 Множества и операции над ними
- •2.1.1 Основные понятия
- •2.1.2 Способы задания множеств
- •2.1.3 Операции над множествами
- •2.1.4 Свойства операций над множествами. Алгебра множеств
- •2.1.5 Декартово произведение множеств
- •2.2 Отображения множеств
- •2.2.1 Основные понятия
- •2.2.2 Произведение (композиция) отображений
- •2.2.3 Обратные отображения
- •2.3 Отношения
- •2.3.1 Основные понятия и способы задания отношений
- •2.3.2 Операции над бинарными отношениями и их свойства
- •2.4 Отношения экивалентности
- •2.4.1 Классы эквивалентности
- •2.4.2 Отношения частичного порядка
- •2.5 Комбинаторика
- •2.5.1 Размещения
- •2.5.2 Перестановки
- •2.5.3 Сочетания
- •2.5.4 Сочетания с повторениями
- •2.5.5 Бином Ньютона. Понятие о производящей функции
- •2.5.6 Числа Стирлинга
- •2.5.7 Число Белла
- •2.6 Мощности множеств
- •2.6.1 Мощность конечного множества
- •2.6.2 Мощности бесконечных множеств. Счетные множества
- •2.6.3 Несчетные множества. Мощность континуума
- •2.6.4 Кардинальные числа. Гипотеза континуума
- •3 ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ
- •3.1 Основные определения и типы графов
- •3.1.1 Основные понятия
- •3.1.2 Основные типы графов
- •3.1.3 Обобщения понятия графа
- •3.1.4 Изоморфные графы
- •3.1.5 Количество различных графов порядка n
- •3.2 Основные числовые характеристики и матрицы графа
- •3.2.1 Степени вершин графа
- •3.2.2 Матрица смежности
- •3.2.3 Матрица Кирхгофа
- •3.2.4 Матрица инцидентности
- •3.3 Подграфы и операции на графах
- •3.3.1 Подграфы
- •3.3.2 Операции над графами
- •3.4 Связные графы и расстояние в графах
- •3.4.1 Маршруты в графах. Связные графы
- •3.4.2 Компоненты связности. Связность графа и его дополнения
- •3.4.3 Расстояния на графах
- •3.4.4 Метод поиска в ширину
- •3.4.5 Выяснение вопросов связности, достижимости и расстояний на графе по матрице смежности
- •3.5 Деревья и остовы
- •3.5.1 Критерии дерева
- •3.5.3 Типы вершин дерева, радиус и центры
- •3.5.4 Остовы графа, циклический ранг и ранг разрезов
- •3.5.5 Задача о минимальном остове
- •3.5.6 Разрезы графа. Фундаментальная система циклов и фундаментальная система разрезов
- •3.5.7 Линейное пространство графа
- •3.6 Эйлеровы и гамильтоновы графы
- •3.6.1 Эйлеровы графы
- •3.6.2 Гамильтоновы графы
- •3.7 Планарные графы
- •3.7.1 Вложимость графов в трехмерное пространство
- •3.7.2 Планарные графы. Формула Эйлера
- •3.7.3 Следствия из формулы Эйлера
- •3.7.4 Гомеоморфные графы. Критерий планарности
- •3.8 Раскраски графов
- •3.8.1 Хроматическое число графа
- •3.8.2 Хроматическое число 2-дольного графа. Критерий 2-дольности
- •3.8.3 Некоторые оценки хроматического числа
- •3.8.4 Раскраски планарных графов
- •3.8.5 Реберная раскраска графа
- •3.9 Паросочетания
- •3.9.1 Паросочетания
- •3.9.2 Теорема Холла о свадьбах
- •3.10 Сети
- •3.10.1 Основные понятия
- •3.10.2 Потоки в сетях
- •3.10.3 Сетевое планирование
- •ПРОДОЛЖЕНИЕ ОГЛАВЛЕНИЯ
- •4 ЭЛЕМЕНТЫ ЧИСЛЕННЫХ МЕТОДОВ
- •4.1 Математическое моделирование и вычислительный эксперимент
- •4.2 Метод Гаусса решения систем линейных алгебраических уравнений. Плохая обусловленность и анализ ошибок. Влияние погрешностей округления
- •4.3 Итерационные методы решения систем линейных алгебраических уравнений. Метод простых итераций и метод Зейделя
- •4.3.1 Основные понятия
- •4.3.2 Метод простой итерации. Описание метода
- •4.3.3 Некоторые сведения о векторах и матрицах
- •4.3.4 Условия и скорость сходимости метода простой итерации
- •4.3.5 Приведение системы (1) к виду (2)
- •4.4 Интерполирование алгебраическими многочленами. Интерполяционный многочлен Лагранжа
- •4.4.1 Постановка задачи
- •4.4.2 Интерполяционная формула Лагранжа. Представление и оценка остатка
- •4.4.3 Практическое применение интерполяции
- •4.5 Конечные разности. Интерполяционный многочлен Ньютона
- •4.5.1 Конечные разности
- •4.5.2 Интерполяционный многочлен Ньютона
- •4.5.3 Линейная интерполяция
- •4.6 Многочлены Чебышева на отрезке [-1, 1]. Интерполирование сплайнами
- •4.7 Численное интегрирование
- •4.7.1 Формулы прямоугольников
- •4.7.2. Формула трапеций
- •4.7.3. Формула Симпсона (метод параболических трапеций)
- •4.7.4 Квадратурные формулы наивысшей алгебраической степени точности (квадратурные формулы Гаусса)
- •4.8 Численное решение нелинейных уравнений
- •4.8.1. Отделение корней
- •4.8.2 Метод деления отрезка пополам
- •4.8.3 Метод простой итерации (метод последовательных приближений)
- •4.8.4. Метод Ньютона (метод касательных)
- •4.8.5 Метод секущих
- •4.8.6 Метод хорд
- •4.9 Итерационные методы решения систем нелинейных уравнений
- •4.9.1 Метод простой итерации
- •4.9.2 Метод простой итерации для системы двух уравнений
- •4.9.3 Метод Ньютона
- •4.9.4 Метод Ньютона для системы двух уравнений
- •4.10 Численные методы решения задачи Коши для обыкновенного дифференциального уравнения
- •4.10.1 Метод Эйлера
- •4.10.2 Методы Рунге–Кутта
- •4.11 Постановка задачи линейного программирования. Геометрическая интерпретация и графическое решение задачи линейного программирования
- •4.11.1 Предмет математического программирования
- •4.11.2 Основная задача линейного программирования
- •4.11.3 Геометрический смысл системы линейных неравенств
- •4.11.4 Графический метод решения задач линейного программирования
- •4.12 Симплексный метод решения задачи линейного программирования. Двойственность в линейном программировании
- •4.12.1 Свойства решений задачи линейного программирования (ЗЛП)
- •4.12.2 Общая идея симплексного метода
- •4.12.3 Построение начального опорного плана
- •4.12.4 Признак оптимальности опорного плана. Симплексные таблицы
- •4.12.5 Переход к нехудшему опорному плану. Симплексные преобразования
- •4.13 Разностные методы
- •4.13.1 Основные понятия
- •4.13.2 Сетки и сеточные функции
- •4.13. 3 Аппроксимация простейших дифференциальных операторов
- •4.13.4 Разностная задача
- •4.13.5 Устойчивость
- •4.13.6 Связь аппроксимации и устойчивости со сходимостью
- •4.13.7 Явные и неявные разностные схемы
- •ОГЛАВЛЕНИЕ
- •Лабораторная работа 5. Задача коммивояжера
- •ПРОДОЛЖЕНИЕ ОГЛАВЛЕНИЯ
- •2.1. Метод Гаусса решения систем линейных алгебраических уравнений
- •2.2. Итерационные методы решения систем линейных алгебраических уравнений. Метод простых итераций и метод Зейделя
- •2.2.1. Метод простых итераций
- •2.2.2 Метод Зейделя
- •2.3. Интерполирование алгебраическими многочленами. Интерполяционный многочлен Лагранжа
- •2.3.1. Постановка задачи
- •2.3.2 Интерполяционный многочлен Лагранжа
- •2.3.3 Практическое применение интерполирования. Оценка погрешности интерполяционного многочлена Лагранжа
- •2.4 Конечные разности. Интерполяционный многочлен Ньютона
- •2.4.1 Конечные разности
- •2.4.2 Первая интерполяционная формула Ньютона (для интерполирования вперед)
- •2.4.3 Вторая интерполяционная формула Ньютона (для интерполирования назад)
- •2.5 Интерполирование сплайнами
- •2.6 Численное интегрирование
- •2.6.1 Метод средних прямоугольников
- •2.6.2 Формула трапеций
- •2.6.3 Формула Симпсона (метод параболических трапеций)
- •2.7 Численное решение нелинейных уравнений. Отделение корней. Метод половинного деления. Метод простой итерации
- •2.7.1 Отделение корней
- •2.7.2 Метод половинного деления
- •2.7.3 Метод простой итерации (метод последовательных приближений)
- •2.7.4 Практический критерий сходимости (когда надо прекращать итерации)
- •2.8 Итерационные методы решения нелинейных уравнений. Метод Ньютона. Метод секущих. Метод хорд
- •2.8.1 Метод Ньютона (метод касательных)
- •2.8.2 Метод секущих
- •2.8.3 Метод хорд
- •2.9 Итерационные методы решения систем нелинейных уравнений
- •2.9.1 Метод простой итерации для системы двух уравнений
- •2.9.2 Метод Ньютона для системы двух уравнений
- •2.10.1 Метод Эйлера
- •2.10.2 Метод Рунге-Кутта
- •2.11 Графическая интерпретация и графическое решение задачи линейного программирования
- •2.11.1 Основная задача линейного программирования
- •2.11.2 Графическая интерпретация задачи линейного программирования
- •2.11.3 Графическое решение задачи линейного программирования
- •2.12 Симплексный метод решения задачи линейного программирования
- •2.13 Метод сеток для уравнения параболического типа
- •2.13.1 Общие сведения
- •2.13.2 Постановка задачи
- •2.13.3 Разностные схемы
- •2.13.4 Оценки погрешностей
- •2.14 Метод сеток для уравнения гиперболического типа
- •ОГЛАВЛЕНИЕ
- •1 Операции над множествами. Алгебра множеств. Декартово произведение множеств
- •2 Отображения множеств. Бинарные отношения на множествах
- •3 Комбинаторика и мощности множеств
- •6 Расстояния в графах
- •7 Деревья и остовы
- •8 Эйлеровы графы. Критерий эйлеровости. Планарные графы. Формула Эйлера
- •9 Раскраски графов. Хроматическое число графа
- •10 Сети и потоки в сетях
- •Тесты по разделу «ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ»
- •ЭЛЕМЕНТЫ ЧИСЛЕННЫХ МЕТОДОВ
- •1 Численные методы решения систем линейных алгебраических уравнений
- •2 Интерполирование алгебраическими многочленами
- •3 Численное интегрирование
- •4 Численные методы решения нелинейных уравнений и систем нелинейных уравнений
- •5 Численное решение обыкновенных дифференциальных уравнений первого порядка
- •6 Линейное программирование
- •7 Численное решение уравнений с частными производными
- •Тесты по разделу «ЭЛЕМЕНТЫ ЧИСЛЕННЫХ МЕТОДОВ»
- •ОГЛАВЛЕНИЕ
- •ПРОГРАММА ДИСЦИПЛИНЫ
- •СПИСОК ВОПРОСОВ К ЗАЧЕТУ ПО ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКЕ
- •СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
Решение. Заменив знаки неравенств на знаки равенств, получим систему уравнений четырех прямых:
3x1 + 2x2 = 9, (I)2x1 −3x2 = 8, (II)− x1 + x2 = 2, (III)
x = 5. (IV)
2
Учтем также условия целочисленности: x1 ≥ 0, x2 ≥ 0.
Область решений системы неравенств является многоугольник ABCD.
4.11.4 Графический метод решения задач линейного программирования
Пусть есть система m линейных неравенств с двумя неизвестными |
x1, x2 (5), а также |
линейная форма |
|
Z = S1x1 + S2 x2 . |
(6) |
Требуется среди всех неотрицательных решений системы (5) x1 ≥ 0, x2 ≥ 0 (7) выбрать такое, которое обращает линейную форму (6) в минимум.
Область решений систем (5), (7) есть некоторая выпуклая многоугольная область на плоскости.
Приравняем выражение для Z какой-либо постоянной
(8)
Уравнение (8) на плоскости определяет прямую линию, в точках которой функция принимает одно и то же фиксированное значение, а именно: С. Такая прямая называется прямой уровня функции Z, отвечающей значению С. Если для Z принять другую постоян-
191
ную, получим другую линию уровня. Равенство (8) геометрически представляет собой семейство параллельных прямых. Будем перемещать прямую MN параллельно самой себе в направлении увеличения Z (или в направлении уменьшения Z, если требуется вычислить минимум линейной формы).
При этом возможны два случая. Параллельное перемещение приводит прямую в такое положение, что у нее окажется одна общая точка с многоугольником – вершина. Координаты точки В дают максимум функции (6). Может оказаться, что прямая будет параллельна одной из сторон многоугольника. В таком случае экстремум достигается во всех точках соответствующей стороны ВС многоугольника.
Графическим методом можно решить задачу линейного программирования с n > 2 переменными, если в ее канонической записи число неизвестных n и число линейно независимых уравнений m связаны соотношением n −m ≤ 2 . В этом случае каноническую форму задачи преобразовывают в симметричную, которая будет содержать не более двух переменных. Решая эту задачу графически, находят два компонента оптимального плана. Подставляя их в ограничения задачи, определяют и остальные компоненты.
Пример. Задача о диете.
Для сохранения здоровья и работоспособности человек должен потреблять в сутки некоторое количество питательных веществ: белков, жиров, углеводов, воды и витаминов. Запасы их в различных видах пищи Пi (i=1, 2, …) неодинаковы. Ограничимся, например, двумя видами пищи, в которой количество каждого вещества в единице пищи представлено в таблице:
Питательные вещества |
Минимальная норма |
Вид пищи |
||
|
|
|
П1 |
П2 |
В1 |
– жиры |
10 |
1 |
5 |
В2 |
– белки |
12 |
3 |
2 |
В3 |
– углеводы |
16 |
2 |
4 |
В4 |
– вода |
10 |
2 |
2 |
В5 |
– витамины |
1 |
1 |
0 |
192
Стоимость единицы пищи вида П1 20 центов, вида П2 30 центов. Требуется так организовать питание, чтобы стоимость его была наименьшей, но организм получил не менее минимальной суточной нормы питательных веществ всех видов.
Решение. Обозначим через x1 количество пищи П1, а через x2 – количество пищи П2, принятие которой должно сохранить здоровье и работоспособность человека при минимальной цене пищи. Так как стоимость единицы пищи вида П1 20 центов, то цена от x1 единиц пищи 20 x1, а цена вида П2 пищи 30 x2, то общая цена задается линейной формой Z=20x1+30x2. Переменные x1 и x2 не могут быть произвольными. Во-первых, x1 и x2 не должны быть отрицательными. Во-вторых, организм не должен принимать меньше, чем минимальную норму питательных веществ. Поэтому получает ограничения
x |
+ 5x ≥10, |
|
||
1 |
|
2 |
|
|
3x1 + 2x2 ≥12, |
|
|||
|
|
+ 4x2 |
≥16, |
(9) |
2x1 |
||||
2x |
+ 2x |
≥10, |
|
|
|
1 |
2 |
|
|
|
x1 ≥1, x1 ≥ 0, x2 ≥ 0. |
|
||
|
|
|
|
|
Мы пришли таким образом, к следующей задаче: минимизировать линейную форму Z=20x1+30x2 при условиях (9). Чтобы решить поставленную задачу, построим выпуклый многоугольник, соответствующий системе неравенств (9). С этой целью на плоскости x1Ox2 построим прямые линии:
x1 +5x2 =10, (I)3x1 + 2x2 =12, (II)2x1 + 4x2 =16, (III)2x1 + 2x2 =10, (IV)
x =1. (V)
1
Областью решений данной системы неравенств (9) является неограниченная фигура. Точки А, В, С являются вершинами полученной области решений. Их координаты:
x1 +5x2 =10 |
20 |
; |
2 |
|
; |
2x1 + 4x2 =16 |
B(2;3); |
x1 =1 |
|
|
9 |
|||||||
A : |
+ 4x2 |
=16 |
A |
3 |
3 |
|
B : |
+ 2x2 |
=12 |
C : |
+ 2x2 |
=12 |
C 1; |
2 |
. |
|||
2x1 |
|
|
|
|
3x1 |
|
3x1 |
|
|
|||||||||
193
