- •ПЕРЕЧЕНЬ МАТЕРИАЛОВ
- •ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
- •ОГЛАВЛЕНИЕ
- •1 ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ
- •1.1 Логика высказываний
- •1.1.1 Понятие логического высказывания
- •1.1.2 Логические операции
- •1.1.3 Пропозиционные формулы
- •1.1.4 Тавтологии
- •1.1.5 Равносильные формулы
- •1.2 Булевы функции
- •1.2.1 Понятие булевой функции. Число булевых функций от n переменных
- •1.2.2 Элементарные булевы функции. Представление булевых функций пропозиционными формулами
- •1.2.3 Двойственные функции. Принцип двойственности
- •1.2.4 Совершенные конъюнктивные нормальные формы (СКНФ)
- •1.2.5 Полиномы Жегалкина
- •1.3 Полнота и замкнутость
- •1.3.1 Полные системы функций и замкнутые классы
- •1.3.2 Основные замкнутые классы
- •1.3.3 Теоремы о функциональной полноте
- •1.3.4 Базисы пространства булевых функций
- •1.4 Минимизация булевых функций
- •1.4.1 Постановка задачи
- •1.4.2 Метод Квайна-Макклоски
- •1.4.3 Карты Карно
- •1.5 Реализация булевых функций
- •1.5.1 Контактные схемы
- •1.5.2 Схемы из функциональных элементов
- •1.6 Предикаты
- •1.6.1 Основные понятия и определения
- •1.6.2 Операции над предикатами
- •1.6.3 Равносильные формулы логики предикатов
- •1.6.4 Приведенная форма и предваренная нормальная форма предиката
- •2 ОСНОВЫ ТЕОРИИ МНОЖЕСТВ
- •2.1 Множества и операции над ними
- •2.1.1 Основные понятия
- •2.1.2 Способы задания множеств
- •2.1.3 Операции над множествами
- •2.1.4 Свойства операций над множествами. Алгебра множеств
- •2.1.5 Декартово произведение множеств
- •2.2 Отображения множеств
- •2.2.1 Основные понятия
- •2.2.2 Произведение (композиция) отображений
- •2.2.3 Обратные отображения
- •2.3 Отношения
- •2.3.1 Основные понятия и способы задания отношений
- •2.3.2 Операции над бинарными отношениями и их свойства
- •2.4 Отношения экивалентности
- •2.4.1 Классы эквивалентности
- •2.4.2 Отношения частичного порядка
- •2.5 Комбинаторика
- •2.5.1 Размещения
- •2.5.2 Перестановки
- •2.5.3 Сочетания
- •2.5.4 Сочетания с повторениями
- •2.5.5 Бином Ньютона. Понятие о производящей функции
- •2.5.6 Числа Стирлинга
- •2.5.7 Число Белла
- •2.6 Мощности множеств
- •2.6.1 Мощность конечного множества
- •2.6.2 Мощности бесконечных множеств. Счетные множества
- •2.6.3 Несчетные множества. Мощность континуума
- •2.6.4 Кардинальные числа. Гипотеза континуума
- •3 ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ
- •3.1 Основные определения и типы графов
- •3.1.1 Основные понятия
- •3.1.2 Основные типы графов
- •3.1.3 Обобщения понятия графа
- •3.1.4 Изоморфные графы
- •3.1.5 Количество различных графов порядка n
- •3.2 Основные числовые характеристики и матрицы графа
- •3.2.1 Степени вершин графа
- •3.2.2 Матрица смежности
- •3.2.3 Матрица Кирхгофа
- •3.2.4 Матрица инцидентности
- •3.3 Подграфы и операции на графах
- •3.3.1 Подграфы
- •3.3.2 Операции над графами
- •3.4 Связные графы и расстояние в графах
- •3.4.1 Маршруты в графах. Связные графы
- •3.4.2 Компоненты связности. Связность графа и его дополнения
- •3.4.3 Расстояния на графах
- •3.4.4 Метод поиска в ширину
- •3.4.5 Выяснение вопросов связности, достижимости и расстояний на графе по матрице смежности
- •3.5 Деревья и остовы
- •3.5.1 Критерии дерева
- •3.5.3 Типы вершин дерева, радиус и центры
- •3.5.4 Остовы графа, циклический ранг и ранг разрезов
- •3.5.5 Задача о минимальном остове
- •3.5.6 Разрезы графа. Фундаментальная система циклов и фундаментальная система разрезов
- •3.5.7 Линейное пространство графа
- •3.6 Эйлеровы и гамильтоновы графы
- •3.6.1 Эйлеровы графы
- •3.6.2 Гамильтоновы графы
- •3.7 Планарные графы
- •3.7.1 Вложимость графов в трехмерное пространство
- •3.7.2 Планарные графы. Формула Эйлера
- •3.7.3 Следствия из формулы Эйлера
- •3.7.4 Гомеоморфные графы. Критерий планарности
- •3.8 Раскраски графов
- •3.8.1 Хроматическое число графа
- •3.8.2 Хроматическое число 2-дольного графа. Критерий 2-дольности
- •3.8.3 Некоторые оценки хроматического числа
- •3.8.4 Раскраски планарных графов
- •3.8.5 Реберная раскраска графа
- •3.9 Паросочетания
- •3.9.1 Паросочетания
- •3.9.2 Теорема Холла о свадьбах
- •3.10 Сети
- •3.10.1 Основные понятия
- •3.10.2 Потоки в сетях
- •3.10.3 Сетевое планирование
- •ПРОДОЛЖЕНИЕ ОГЛАВЛЕНИЯ
- •4 ЭЛЕМЕНТЫ ЧИСЛЕННЫХ МЕТОДОВ
- •4.1 Математическое моделирование и вычислительный эксперимент
- •4.2 Метод Гаусса решения систем линейных алгебраических уравнений. Плохая обусловленность и анализ ошибок. Влияние погрешностей округления
- •4.3 Итерационные методы решения систем линейных алгебраических уравнений. Метод простых итераций и метод Зейделя
- •4.3.1 Основные понятия
- •4.3.2 Метод простой итерации. Описание метода
- •4.3.3 Некоторые сведения о векторах и матрицах
- •4.3.4 Условия и скорость сходимости метода простой итерации
- •4.3.5 Приведение системы (1) к виду (2)
- •4.4 Интерполирование алгебраическими многочленами. Интерполяционный многочлен Лагранжа
- •4.4.1 Постановка задачи
- •4.4.2 Интерполяционная формула Лагранжа. Представление и оценка остатка
- •4.4.3 Практическое применение интерполяции
- •4.5 Конечные разности. Интерполяционный многочлен Ньютона
- •4.5.1 Конечные разности
- •4.5.2 Интерполяционный многочлен Ньютона
- •4.5.3 Линейная интерполяция
- •4.6 Многочлены Чебышева на отрезке [-1, 1]. Интерполирование сплайнами
- •4.7 Численное интегрирование
- •4.7.1 Формулы прямоугольников
- •4.7.2. Формула трапеций
- •4.7.3. Формула Симпсона (метод параболических трапеций)
- •4.7.4 Квадратурные формулы наивысшей алгебраической степени точности (квадратурные формулы Гаусса)
- •4.8 Численное решение нелинейных уравнений
- •4.8.1. Отделение корней
- •4.8.2 Метод деления отрезка пополам
- •4.8.3 Метод простой итерации (метод последовательных приближений)
- •4.8.4. Метод Ньютона (метод касательных)
- •4.8.5 Метод секущих
- •4.8.6 Метод хорд
- •4.9 Итерационные методы решения систем нелинейных уравнений
- •4.9.1 Метод простой итерации
- •4.9.2 Метод простой итерации для системы двух уравнений
- •4.9.3 Метод Ньютона
- •4.9.4 Метод Ньютона для системы двух уравнений
- •4.10 Численные методы решения задачи Коши для обыкновенного дифференциального уравнения
- •4.10.1 Метод Эйлера
- •4.10.2 Методы Рунге–Кутта
- •4.11 Постановка задачи линейного программирования. Геометрическая интерпретация и графическое решение задачи линейного программирования
- •4.11.1 Предмет математического программирования
- •4.11.2 Основная задача линейного программирования
- •4.11.3 Геометрический смысл системы линейных неравенств
- •4.11.4 Графический метод решения задач линейного программирования
- •4.12 Симплексный метод решения задачи линейного программирования. Двойственность в линейном программировании
- •4.12.1 Свойства решений задачи линейного программирования (ЗЛП)
- •4.12.2 Общая идея симплексного метода
- •4.12.3 Построение начального опорного плана
- •4.12.4 Признак оптимальности опорного плана. Симплексные таблицы
- •4.12.5 Переход к нехудшему опорному плану. Симплексные преобразования
- •4.13 Разностные методы
- •4.13.1 Основные понятия
- •4.13.2 Сетки и сеточные функции
- •4.13. 3 Аппроксимация простейших дифференциальных операторов
- •4.13.4 Разностная задача
- •4.13.5 Устойчивость
- •4.13.6 Связь аппроксимации и устойчивости со сходимостью
- •4.13.7 Явные и неявные разностные схемы
- •ОГЛАВЛЕНИЕ
- •Лабораторная работа 5. Задача коммивояжера
- •ПРОДОЛЖЕНИЕ ОГЛАВЛЕНИЯ
- •2.1. Метод Гаусса решения систем линейных алгебраических уравнений
- •2.2. Итерационные методы решения систем линейных алгебраических уравнений. Метод простых итераций и метод Зейделя
- •2.2.1. Метод простых итераций
- •2.2.2 Метод Зейделя
- •2.3. Интерполирование алгебраическими многочленами. Интерполяционный многочлен Лагранжа
- •2.3.1. Постановка задачи
- •2.3.2 Интерполяционный многочлен Лагранжа
- •2.3.3 Практическое применение интерполирования. Оценка погрешности интерполяционного многочлена Лагранжа
- •2.4 Конечные разности. Интерполяционный многочлен Ньютона
- •2.4.1 Конечные разности
- •2.4.2 Первая интерполяционная формула Ньютона (для интерполирования вперед)
- •2.4.3 Вторая интерполяционная формула Ньютона (для интерполирования назад)
- •2.5 Интерполирование сплайнами
- •2.6 Численное интегрирование
- •2.6.1 Метод средних прямоугольников
- •2.6.2 Формула трапеций
- •2.6.3 Формула Симпсона (метод параболических трапеций)
- •2.7 Численное решение нелинейных уравнений. Отделение корней. Метод половинного деления. Метод простой итерации
- •2.7.1 Отделение корней
- •2.7.2 Метод половинного деления
- •2.7.3 Метод простой итерации (метод последовательных приближений)
- •2.7.4 Практический критерий сходимости (когда надо прекращать итерации)
- •2.8 Итерационные методы решения нелинейных уравнений. Метод Ньютона. Метод секущих. Метод хорд
- •2.8.1 Метод Ньютона (метод касательных)
- •2.8.2 Метод секущих
- •2.8.3 Метод хорд
- •2.9 Итерационные методы решения систем нелинейных уравнений
- •2.9.1 Метод простой итерации для системы двух уравнений
- •2.9.2 Метод Ньютона для системы двух уравнений
- •2.10.1 Метод Эйлера
- •2.10.2 Метод Рунге-Кутта
- •2.11 Графическая интерпретация и графическое решение задачи линейного программирования
- •2.11.1 Основная задача линейного программирования
- •2.11.2 Графическая интерпретация задачи линейного программирования
- •2.11.3 Графическое решение задачи линейного программирования
- •2.12 Симплексный метод решения задачи линейного программирования
- •2.13 Метод сеток для уравнения параболического типа
- •2.13.1 Общие сведения
- •2.13.2 Постановка задачи
- •2.13.3 Разностные схемы
- •2.13.4 Оценки погрешностей
- •2.14 Метод сеток для уравнения гиперболического типа
- •ОГЛАВЛЕНИЕ
- •1 Операции над множествами. Алгебра множеств. Декартово произведение множеств
- •2 Отображения множеств. Бинарные отношения на множествах
- •3 Комбинаторика и мощности множеств
- •6 Расстояния в графах
- •7 Деревья и остовы
- •8 Эйлеровы графы. Критерий эйлеровости. Планарные графы. Формула Эйлера
- •9 Раскраски графов. Хроматическое число графа
- •10 Сети и потоки в сетях
- •Тесты по разделу «ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ»
- •ЭЛЕМЕНТЫ ЧИСЛЕННЫХ МЕТОДОВ
- •1 Численные методы решения систем линейных алгебраических уравнений
- •2 Интерполирование алгебраическими многочленами
- •3 Численное интегрирование
- •4 Численные методы решения нелинейных уравнений и систем нелинейных уравнений
- •5 Численное решение обыкновенных дифференциальных уравнений первого порядка
- •6 Линейное программирование
- •7 Численное решение уравнений с частными производными
- •Тесты по разделу «ЭЛЕМЕНТЫ ЧИСЛЕННЫХ МЕТОДОВ»
- •ОГЛАВЛЕНИЕ
- •ПРОГРАММА ДИСЦИПЛИНЫ
- •СПИСОК ВОПРОСОВ К ЗАЧЕТУ ПО ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКЕ
- •СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
3.7Планарные графы
3.7.1Вложимость графов в трехмерное пространство
Говорят, что граф вкладывается в данное пространство, если он изоморфен некоторому графу в этом пространстве (все вершины и ребра которого состоят из точек данного пространства), причем кривые, изображающие ребра, не пересекаются.
Теорема. Всякий граф вкладывается в трехмерное евклидово пространство.
Доказательство. Расположим все вершины данного графа на некоторой прямой. Для каждого ребра (дуги) проведем плоскость через прямую, на которой лежат вершины (для различных ребер – различные плоскости) и соединим соответствующие вершины линией, целиком принадлежащей
данной плоскости, так чтобы единственными общими точками данного ребра и прямой были вершины, инцидентные данному ребру (см. рис. 1). Понятно, что при этом ребра не могут пересекаться.
Замечание. Теорема справедлива также для мульти- и псевдографов.
3.7.2 Планарные графы. Формула Эйлера
Граф называется планарным, если он может быть уложен на плоскости. Непосредственная укладка планарного графа, т.е. его рисунок, на котором ребра не пересекаются, называется плоским графом. Например, трехмерный куб является планарным графом (см. рис. 2), полный граф K4 также планарный (рис. 3).
|
Рис. 3 |
|
|
Рис. 2 |
Рис. 3 |
Ребра плоского графа, образующие простые циклы, разбивают плоскость на несколько частей, которые называются гранями плоского графа. Так, граф куба (см. рис.) имеет 6 граней (5 внутренних и одну внешнюю), граф K4 имеет 4 грани (3 внутренних и 1 внешнюю). Внешнюю грань имеет всякий планарный граф, даже если в нем нет циклов.
Плоский граф вместе со всеми своими вершинами, ребрами, а также гранями называ-
ют плоской картой.
Теорема. Для всякого связного плоского (n, m) -графа с f гранями справедливо равен-
ство (формула Эйлера): n − m + f = 2 .
101
Доказательство. Пусть T – остов графа G . T имеет только одну (внешнюю) грань и n −1 ребро, т.е. в этом случае: f =1, m = n −1 и очевидно формула справедлива. Будем поочередно добавлять к остову T недостающие ребра графа G . При этом число вершин n не меняется, число ребер m увеличивается на 1. Число граней f также увеличивается на 1. Действительно, если добавленное ребро соединяет две вершины, принадлежащие какомулибо циклу, то грань, ограниченная данным циклом, разбивается на две грани. В противном случае, новая внутренняя грань появляется за счет части внешней грани. В любом случае число граней увеличивается на 1. Таким образом, после добавления каждого ребра формула остается верной. Значит, когда будут восстановлены все ребра и получен граф G , формула также окажется верной.
3.7.3 Следствия из формулы Эйлера
1) Число граней любой плоской укладки планарного (n m, )-графа G постоянно и равно m −n + 2 .
Отметим также, что число граней f = v(G)+1, где v(G) – циклический ранг графа G. 2) Пусть выпуклый многогранник имеет В вершин, Р ребер и Г граней. Тогда
B − P + Г = 2 . |
|
|
|
|
Доказательство. Поместим многогранник внутрь |
|
|
|
|
сферы. Выберем некоторую внутреннюю точку O много- |
|
|
|
|
гранника и проведем через нее всевозможные лучи, ото- |
|
|
|
|
бражая точки поверхности многогранника в точки сферы |
|
|
|
|
(см. рис. 4). Получим укладку поверхности многогран- |
|
|
|
|
ника на сфере, представляющую собой некоторый граф |
|
|
|
|
на сфере. Выберем некоторую внутреннюю точку N од- |
|
|
|
|
ной из граней графа на сфере и проведем через диамет- |
|
|
|
|
|
Рис. 4 |
|||
рально противоположную точку S касательную плос- |
|
|||
|
|
|
||
|
|
|
||
кость α к сфере. Проведя через N всевозможные |
|
|
|
|
лучи, отобразим сферу на плоскость (точка N |
|
|
|
|
перейдет в бесконечно удаленную точку плоско- |
|
|
|
|
сти). При этом граф со сферы отобразится в неко- |
|
|
|
|
торый плоский граф на плоскости α. Заметим, что |
|
|
|
|
при этом грань, содержащая точку N отобразится |
|
|
|
|
во внешнюю грань графа на плоскости α. (рис. 5). |
|
|
|
|
|
Рис. 5 |
|
||
Композиция обоих отображений, очевидно, опре- |
|
|
||
|
|
|
|
|
|
|
|
|
|
102
деляет биекцию между множествами вершин, ребер, граней данного многогранника и такими же множествами полученного плоского графа. Поэтому полученный граф имеет В вершин, Р ребер и Г граней. Остается воспользоваться формулой Эйлера для графов.
3) Для всякого планарного (n, m) -графа порядка n ≥ 3, m ≤ 3n − 6 . Доказательство. Пусть G – плоский связный (n, m) -граф с f гранями. Всякая грань
ограничена не менее, чем 3 ребрами. Всякое ребро либо разграничивает 2 грани, либо ни одной (если не принадлежит ни одному циклу). Поэтому 3 f ≤ 2 m . По формуле Эйлера
f= m −n + 2 . Поэтому 3(m − n + 2) ≤ 2 m , откуда и получаем нужное неравенство.
4)Граф K5 не является планарным.
Доказательство. Действительно порядок n полного графа K5 равен 5, а число его ребер m =10. Если бы этот граф был планарным, то для него выполнялось бы следствие 3, т.е. 10 ≤ 3 5 −6 10 ≤ 9 , которое не верно. Следовательно, K5 – не планарный.
5) Граф K3,3 не является планарным.
Доказательство. Данный граф имеет n = 6 вершин и m = 9 ребер. Предположим, что он планарный. Тогда он имеет f = m − n + 2 = 9 −6 + 2 = 5 граней. В то же время, всякая грань двудольного графа ограничена четным числом ребер (все циклы имеют четную длину), т.е. не менее, чем четырьмя ребрами. Поэтому 4 f ≤ 2 m . Но для K3,3 это неравенство приво-
дит к 4 5 ≤ 2 9 , что не верно. Значит, предположение о планарности графа K3,3 ошибочно.
6) В любом простом планарном графе существует вершина степени не более 5. Доказательство. Без потери общности можно считать, что данный граф G – связный
планарный (n, m) -граф порядка n ≥ 3 . Тогда согласно следствию 3 имеем: m ≤ 3 n −6 . Предположим противное, что степени всех вершин графа G не менее 6. Тогда по лемме о рукопожатиях 6 n ≤ 2 m , т.е. m ≥ 3n , что противоречит неравенству в следствии 3. Утверждение доказано.
3.7.4 Гомеоморфные графы. Критерий планарности
Рассмотрим две новые операции на графах.
Подразбиением ребра {u, v} графа G называется операция удаления ребра {u, v} с добавлением новой вершины w и двух ребер {u, w} и {w, v}. На рисунке г рафа G это означает, что добавляется новая вершина w на ребре {u, v}, которое, таким образом, разбивается на два ребра (рис. 6).
Стягивание смежных вершин u и v графа G означает удаление ребра {u, v} и замена
103
