- •ПЕРЕЧЕНЬ МАТЕРИАЛОВ
- •ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
- •ОГЛАВЛЕНИЕ
- •1 ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ
- •1.1 Логика высказываний
- •1.1.1 Понятие логического высказывания
- •1.1.2 Логические операции
- •1.1.3 Пропозиционные формулы
- •1.1.4 Тавтологии
- •1.1.5 Равносильные формулы
- •1.2 Булевы функции
- •1.2.1 Понятие булевой функции. Число булевых функций от n переменных
- •1.2.2 Элементарные булевы функции. Представление булевых функций пропозиционными формулами
- •1.2.3 Двойственные функции. Принцип двойственности
- •1.2.4 Совершенные конъюнктивные нормальные формы (СКНФ)
- •1.2.5 Полиномы Жегалкина
- •1.3 Полнота и замкнутость
- •1.3.1 Полные системы функций и замкнутые классы
- •1.3.2 Основные замкнутые классы
- •1.3.3 Теоремы о функциональной полноте
- •1.3.4 Базисы пространства булевых функций
- •1.4 Минимизация булевых функций
- •1.4.1 Постановка задачи
- •1.4.2 Метод Квайна-Макклоски
- •1.4.3 Карты Карно
- •1.5 Реализация булевых функций
- •1.5.1 Контактные схемы
- •1.5.2 Схемы из функциональных элементов
- •1.6 Предикаты
- •1.6.1 Основные понятия и определения
- •1.6.2 Операции над предикатами
- •1.6.3 Равносильные формулы логики предикатов
- •1.6.4 Приведенная форма и предваренная нормальная форма предиката
- •2 ОСНОВЫ ТЕОРИИ МНОЖЕСТВ
- •2.1 Множества и операции над ними
- •2.1.1 Основные понятия
- •2.1.2 Способы задания множеств
- •2.1.3 Операции над множествами
- •2.1.4 Свойства операций над множествами. Алгебра множеств
- •2.1.5 Декартово произведение множеств
- •2.2 Отображения множеств
- •2.2.1 Основные понятия
- •2.2.2 Произведение (композиция) отображений
- •2.2.3 Обратные отображения
- •2.3 Отношения
- •2.3.1 Основные понятия и способы задания отношений
- •2.3.2 Операции над бинарными отношениями и их свойства
- •2.4 Отношения экивалентности
- •2.4.1 Классы эквивалентности
- •2.4.2 Отношения частичного порядка
- •2.5 Комбинаторика
- •2.5.1 Размещения
- •2.5.2 Перестановки
- •2.5.3 Сочетания
- •2.5.4 Сочетания с повторениями
- •2.5.5 Бином Ньютона. Понятие о производящей функции
- •2.5.6 Числа Стирлинга
- •2.5.7 Число Белла
- •2.6 Мощности множеств
- •2.6.1 Мощность конечного множества
- •2.6.2 Мощности бесконечных множеств. Счетные множества
- •2.6.3 Несчетные множества. Мощность континуума
- •2.6.4 Кардинальные числа. Гипотеза континуума
- •3 ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ
- •3.1 Основные определения и типы графов
- •3.1.1 Основные понятия
- •3.1.2 Основные типы графов
- •3.1.3 Обобщения понятия графа
- •3.1.4 Изоморфные графы
- •3.1.5 Количество различных графов порядка n
- •3.2 Основные числовые характеристики и матрицы графа
- •3.2.1 Степени вершин графа
- •3.2.2 Матрица смежности
- •3.2.3 Матрица Кирхгофа
- •3.2.4 Матрица инцидентности
- •3.3 Подграфы и операции на графах
- •3.3.1 Подграфы
- •3.3.2 Операции над графами
- •3.4 Связные графы и расстояние в графах
- •3.4.1 Маршруты в графах. Связные графы
- •3.4.2 Компоненты связности. Связность графа и его дополнения
- •3.4.3 Расстояния на графах
- •3.4.4 Метод поиска в ширину
- •3.4.5 Выяснение вопросов связности, достижимости и расстояний на графе по матрице смежности
- •3.5 Деревья и остовы
- •3.5.1 Критерии дерева
- •3.5.3 Типы вершин дерева, радиус и центры
- •3.5.4 Остовы графа, циклический ранг и ранг разрезов
- •3.5.5 Задача о минимальном остове
- •3.5.6 Разрезы графа. Фундаментальная система циклов и фундаментальная система разрезов
- •3.5.7 Линейное пространство графа
- •3.6 Эйлеровы и гамильтоновы графы
- •3.6.1 Эйлеровы графы
- •3.6.2 Гамильтоновы графы
- •3.7 Планарные графы
- •3.7.1 Вложимость графов в трехмерное пространство
- •3.7.2 Планарные графы. Формула Эйлера
- •3.7.3 Следствия из формулы Эйлера
- •3.7.4 Гомеоморфные графы. Критерий планарности
- •3.8 Раскраски графов
- •3.8.1 Хроматическое число графа
- •3.8.2 Хроматическое число 2-дольного графа. Критерий 2-дольности
- •3.8.3 Некоторые оценки хроматического числа
- •3.8.4 Раскраски планарных графов
- •3.8.5 Реберная раскраска графа
- •3.9 Паросочетания
- •3.9.1 Паросочетания
- •3.9.2 Теорема Холла о свадьбах
- •3.10 Сети
- •3.10.1 Основные понятия
- •3.10.2 Потоки в сетях
- •3.10.3 Сетевое планирование
- •ПРОДОЛЖЕНИЕ ОГЛАВЛЕНИЯ
- •4 ЭЛЕМЕНТЫ ЧИСЛЕННЫХ МЕТОДОВ
- •4.1 Математическое моделирование и вычислительный эксперимент
- •4.2 Метод Гаусса решения систем линейных алгебраических уравнений. Плохая обусловленность и анализ ошибок. Влияние погрешностей округления
- •4.3 Итерационные методы решения систем линейных алгебраических уравнений. Метод простых итераций и метод Зейделя
- •4.3.1 Основные понятия
- •4.3.2 Метод простой итерации. Описание метода
- •4.3.3 Некоторые сведения о векторах и матрицах
- •4.3.4 Условия и скорость сходимости метода простой итерации
- •4.3.5 Приведение системы (1) к виду (2)
- •4.4 Интерполирование алгебраическими многочленами. Интерполяционный многочлен Лагранжа
- •4.4.1 Постановка задачи
- •4.4.2 Интерполяционная формула Лагранжа. Представление и оценка остатка
- •4.4.3 Практическое применение интерполяции
- •4.5 Конечные разности. Интерполяционный многочлен Ньютона
- •4.5.1 Конечные разности
- •4.5.2 Интерполяционный многочлен Ньютона
- •4.5.3 Линейная интерполяция
- •4.6 Многочлены Чебышева на отрезке [-1, 1]. Интерполирование сплайнами
- •4.7 Численное интегрирование
- •4.7.1 Формулы прямоугольников
- •4.7.2. Формула трапеций
- •4.7.3. Формула Симпсона (метод параболических трапеций)
- •4.7.4 Квадратурные формулы наивысшей алгебраической степени точности (квадратурные формулы Гаусса)
- •4.8 Численное решение нелинейных уравнений
- •4.8.1. Отделение корней
- •4.8.2 Метод деления отрезка пополам
- •4.8.3 Метод простой итерации (метод последовательных приближений)
- •4.8.4. Метод Ньютона (метод касательных)
- •4.8.5 Метод секущих
- •4.8.6 Метод хорд
- •4.9 Итерационные методы решения систем нелинейных уравнений
- •4.9.1 Метод простой итерации
- •4.9.2 Метод простой итерации для системы двух уравнений
- •4.9.3 Метод Ньютона
- •4.9.4 Метод Ньютона для системы двух уравнений
- •4.10 Численные методы решения задачи Коши для обыкновенного дифференциального уравнения
- •4.10.1 Метод Эйлера
- •4.10.2 Методы Рунге–Кутта
- •4.11 Постановка задачи линейного программирования. Геометрическая интерпретация и графическое решение задачи линейного программирования
- •4.11.1 Предмет математического программирования
- •4.11.2 Основная задача линейного программирования
- •4.11.3 Геометрический смысл системы линейных неравенств
- •4.11.4 Графический метод решения задач линейного программирования
- •4.12 Симплексный метод решения задачи линейного программирования. Двойственность в линейном программировании
- •4.12.1 Свойства решений задачи линейного программирования (ЗЛП)
- •4.12.2 Общая идея симплексного метода
- •4.12.3 Построение начального опорного плана
- •4.12.4 Признак оптимальности опорного плана. Симплексные таблицы
- •4.12.5 Переход к нехудшему опорному плану. Симплексные преобразования
- •4.13 Разностные методы
- •4.13.1 Основные понятия
- •4.13.2 Сетки и сеточные функции
- •4.13. 3 Аппроксимация простейших дифференциальных операторов
- •4.13.4 Разностная задача
- •4.13.5 Устойчивость
- •4.13.6 Связь аппроксимации и устойчивости со сходимостью
- •4.13.7 Явные и неявные разностные схемы
- •ОГЛАВЛЕНИЕ
- •Лабораторная работа 5. Задача коммивояжера
- •ПРОДОЛЖЕНИЕ ОГЛАВЛЕНИЯ
- •2.1. Метод Гаусса решения систем линейных алгебраических уравнений
- •2.2. Итерационные методы решения систем линейных алгебраических уравнений. Метод простых итераций и метод Зейделя
- •2.2.1. Метод простых итераций
- •2.2.2 Метод Зейделя
- •2.3. Интерполирование алгебраическими многочленами. Интерполяционный многочлен Лагранжа
- •2.3.1. Постановка задачи
- •2.3.2 Интерполяционный многочлен Лагранжа
- •2.3.3 Практическое применение интерполирования. Оценка погрешности интерполяционного многочлена Лагранжа
- •2.4 Конечные разности. Интерполяционный многочлен Ньютона
- •2.4.1 Конечные разности
- •2.4.2 Первая интерполяционная формула Ньютона (для интерполирования вперед)
- •2.4.3 Вторая интерполяционная формула Ньютона (для интерполирования назад)
- •2.5 Интерполирование сплайнами
- •2.6 Численное интегрирование
- •2.6.1 Метод средних прямоугольников
- •2.6.2 Формула трапеций
- •2.6.3 Формула Симпсона (метод параболических трапеций)
- •2.7 Численное решение нелинейных уравнений. Отделение корней. Метод половинного деления. Метод простой итерации
- •2.7.1 Отделение корней
- •2.7.2 Метод половинного деления
- •2.7.3 Метод простой итерации (метод последовательных приближений)
- •2.7.4 Практический критерий сходимости (когда надо прекращать итерации)
- •2.8 Итерационные методы решения нелинейных уравнений. Метод Ньютона. Метод секущих. Метод хорд
- •2.8.1 Метод Ньютона (метод касательных)
- •2.8.2 Метод секущих
- •2.8.3 Метод хорд
- •2.9 Итерационные методы решения систем нелинейных уравнений
- •2.9.1 Метод простой итерации для системы двух уравнений
- •2.9.2 Метод Ньютона для системы двух уравнений
- •2.10.1 Метод Эйлера
- •2.10.2 Метод Рунге-Кутта
- •2.11 Графическая интерпретация и графическое решение задачи линейного программирования
- •2.11.1 Основная задача линейного программирования
- •2.11.2 Графическая интерпретация задачи линейного программирования
- •2.11.3 Графическое решение задачи линейного программирования
- •2.12 Симплексный метод решения задачи линейного программирования
- •2.13 Метод сеток для уравнения параболического типа
- •2.13.1 Общие сведения
- •2.13.2 Постановка задачи
- •2.13.3 Разностные схемы
- •2.13.4 Оценки погрешностей
- •2.14 Метод сеток для уравнения гиперболического типа
- •ОГЛАВЛЕНИЕ
- •1 Операции над множествами. Алгебра множеств. Декартово произведение множеств
- •2 Отображения множеств. Бинарные отношения на множествах
- •3 Комбинаторика и мощности множеств
- •6 Расстояния в графах
- •7 Деревья и остовы
- •8 Эйлеровы графы. Критерий эйлеровости. Планарные графы. Формула Эйлера
- •9 Раскраски графов. Хроматическое число графа
- •10 Сети и потоки в сетях
- •Тесты по разделу «ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ»
- •ЭЛЕМЕНТЫ ЧИСЛЕННЫХ МЕТОДОВ
- •1 Численные методы решения систем линейных алгебраических уравнений
- •2 Интерполирование алгебраическими многочленами
- •3 Численное интегрирование
- •4 Численные методы решения нелинейных уравнений и систем нелинейных уравнений
- •5 Численное решение обыкновенных дифференциальных уравнений первого порядка
- •6 Линейное программирование
- •7 Численное решение уравнений с частными производными
- •Тесты по разделу «ЭЛЕМЕНТЫ ЧИСЛЕННЫХ МЕТОДОВ»
- •ОГЛАВЛЕНИЕ
- •ПРОГРАММА ДИСЦИПЛИНЫ
- •СПИСОК ВОПРОСОВ К ЗАЧЕТУ ПО ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКЕ
- •СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
Для ориентированного графа:
1,-1,
I =
ij 2,
0,
если вершина i - начало дуги ej, если вершина i - конец дуги ej,
если дуга ej - петля, начало и конец которой есть вершина vi , иначе, вершина i и дуга ej не инцидентны.
Существует следующая связь между матрицей инцидентности I и матрицей Кирхгофа K графа G. Пусть G – простой граф. Превратим его в ориентированный граф, задав на каждом ребре (произвольную) ориентацию, другими словами, расставим стрелки на всех рёбрах графа G. Полученный граф называется ориентацией графа G.
Теорема. Если K – матрица Кирхгофа графа G и I – матрица инцидентности какойлибо его ориентации, то K = I IT, где IT – транспонированная матрица.
3.3 Подграфы и операции на графах
3.3.1 Подграфы
Граф H называется подграфом графа G (пишут: H G), если V(H) V(G) и E(H) E(G). Если для подграфа H графа G V(H)=V(G), то H называется остовным подгра-
фом.
Если подграф H содержит все рёбра графа G, оба конца которых принадлежат множеству U V(G), то H называется подграфом порождённым (индуцированным) множеством вершин U. Такой подграф H обозначается: G(U).
Рассматриваются также подграфы, порождённые данным подмножеством рёбер графа G, которые вместе с указанными рёбрами содержат все их концы в качестве множества вершин.
Важным классом подграфов являются подграфы, полученные из данного графа G уда-
лением некоторой вершины v (при этом удаляются также все рёб- |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
ра, инцидентные v). Обозначение полученного подграфа: Gv. По- |
1 |
2 |
3 |
||||||||||||||||||||||
нятно, что Gv = G(V(G)\{v}). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
G: |
|
|
|
|
|
|
|
|
|
|
|
||||
Для графа G (рис. 1) на следующих рисунках (рис. 2-5) при- |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
ведены примеры вышеуказанных подграфов: |
|
|
|
|
Рис. 1 |
4 |
5 |
6 |
|||||||||||||||||
1 |
2 |
3 |
1 |
|
|
|
2 |
|
|
|
3 |
|
|||||||||||||
1 |
2 |
3 |
1 |
2 |
3 |
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
5 |
|
5 |
4 |
5 |
6 |
4 |
6 |
|||
|
подграф |
|
G(1, 2, 3, 5) |
|
остовной подграф |
|
|
G5 |
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
Рис. 2 |
Рис. 3 |
|
|
Рис. 4 |
|
|
Рис. 5 |
|||
84
3.3.2 Операции над графами
1. Удаление вершин (см. выше)
Удаление ребра (при этом концы ребра не удаляются), а также добавление ребра. Другие переходы к подграфам или надграфам.
2. Дополнение графа
Граф G называется дополнением графа G, если V(G ) = V(G), причём вершины u и v являются смежными в графе G тогда и только тогда, когда они не смежны в G. Таким образом, G и G не имеют общих рёбер, а E(G) E( G ) с общим множеством вершин образует полный граф (рис. 6).
Рис. 6
3. Объединение графов
Объединением графов G1 и G2 называется граф G1 G2, в котором V(G1 G2) = =V(G1) V(G2) и E(G1 G2) = E(G1) E(G2).
4. Пересечение графов
Пересечением графов G1 и G2 называется граф G1∩G2, в котором V(G1∩G2) = =V(G1)∩V(G2) и E(G1∩G2) = E(G1)∩E(G2) (рис. 7).
G1 |
G2 |
G1 G2 |
G1∩G2 |
Рис. 7
5. Соединение графов
Соединением графов G1 и G2 называется объединение G1 G2, дополненное всеми рёбрами, соединяющими вершины G1 с вершинами G2. Обозначается соединение: G1+G2
(рис. 8).
В частности, если Gi – (ni, mi)-графы, не имеющие общих вершин, то G1+G2 будет (n1+n2, m1+m2+n1 n2)-графом. Так, например, Kp,q = 0p+ 0q = K p + Kq .
Рассматриваются также другие более сложные операции на графах, такие как, произведение графов, прямое произведение и др.
85
