- •ПЕРЕЧЕНЬ МАТЕРИАЛОВ
- •ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
- •ОГЛАВЛЕНИЕ
- •1 ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ
- •1.1 Логика высказываний
- •1.1.1 Понятие логического высказывания
- •1.1.2 Логические операции
- •1.1.3 Пропозиционные формулы
- •1.1.4 Тавтологии
- •1.1.5 Равносильные формулы
- •1.2 Булевы функции
- •1.2.1 Понятие булевой функции. Число булевых функций от n переменных
- •1.2.2 Элементарные булевы функции. Представление булевых функций пропозиционными формулами
- •1.2.3 Двойственные функции. Принцип двойственности
- •1.2.4 Совершенные конъюнктивные нормальные формы (СКНФ)
- •1.2.5 Полиномы Жегалкина
- •1.3 Полнота и замкнутость
- •1.3.1 Полные системы функций и замкнутые классы
- •1.3.2 Основные замкнутые классы
- •1.3.3 Теоремы о функциональной полноте
- •1.3.4 Базисы пространства булевых функций
- •1.4 Минимизация булевых функций
- •1.4.1 Постановка задачи
- •1.4.2 Метод Квайна-Макклоски
- •1.4.3 Карты Карно
- •1.5 Реализация булевых функций
- •1.5.1 Контактные схемы
- •1.5.2 Схемы из функциональных элементов
- •1.6 Предикаты
- •1.6.1 Основные понятия и определения
- •1.6.2 Операции над предикатами
- •1.6.3 Равносильные формулы логики предикатов
- •1.6.4 Приведенная форма и предваренная нормальная форма предиката
- •2 ОСНОВЫ ТЕОРИИ МНОЖЕСТВ
- •2.1 Множества и операции над ними
- •2.1.1 Основные понятия
- •2.1.2 Способы задания множеств
- •2.1.3 Операции над множествами
- •2.1.4 Свойства операций над множествами. Алгебра множеств
- •2.1.5 Декартово произведение множеств
- •2.2 Отображения множеств
- •2.2.1 Основные понятия
- •2.2.2 Произведение (композиция) отображений
- •2.2.3 Обратные отображения
- •2.3 Отношения
- •2.3.1 Основные понятия и способы задания отношений
- •2.3.2 Операции над бинарными отношениями и их свойства
- •2.4 Отношения экивалентности
- •2.4.1 Классы эквивалентности
- •2.4.2 Отношения частичного порядка
- •2.5 Комбинаторика
- •2.5.1 Размещения
- •2.5.2 Перестановки
- •2.5.3 Сочетания
- •2.5.4 Сочетания с повторениями
- •2.5.5 Бином Ньютона. Понятие о производящей функции
- •2.5.6 Числа Стирлинга
- •2.5.7 Число Белла
- •2.6 Мощности множеств
- •2.6.1 Мощность конечного множества
- •2.6.2 Мощности бесконечных множеств. Счетные множества
- •2.6.3 Несчетные множества. Мощность континуума
- •2.6.4 Кардинальные числа. Гипотеза континуума
- •3 ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ
- •3.1 Основные определения и типы графов
- •3.1.1 Основные понятия
- •3.1.2 Основные типы графов
- •3.1.3 Обобщения понятия графа
- •3.1.4 Изоморфные графы
- •3.1.5 Количество различных графов порядка n
- •3.2 Основные числовые характеристики и матрицы графа
- •3.2.1 Степени вершин графа
- •3.2.2 Матрица смежности
- •3.2.3 Матрица Кирхгофа
- •3.2.4 Матрица инцидентности
- •3.3 Подграфы и операции на графах
- •3.3.1 Подграфы
- •3.3.2 Операции над графами
- •3.4 Связные графы и расстояние в графах
- •3.4.1 Маршруты в графах. Связные графы
- •3.4.2 Компоненты связности. Связность графа и его дополнения
- •3.4.3 Расстояния на графах
- •3.4.4 Метод поиска в ширину
- •3.4.5 Выяснение вопросов связности, достижимости и расстояний на графе по матрице смежности
- •3.5 Деревья и остовы
- •3.5.1 Критерии дерева
- •3.5.3 Типы вершин дерева, радиус и центры
- •3.5.4 Остовы графа, циклический ранг и ранг разрезов
- •3.5.5 Задача о минимальном остове
- •3.5.6 Разрезы графа. Фундаментальная система циклов и фундаментальная система разрезов
- •3.5.7 Линейное пространство графа
- •3.6 Эйлеровы и гамильтоновы графы
- •3.6.1 Эйлеровы графы
- •3.6.2 Гамильтоновы графы
- •3.7 Планарные графы
- •3.7.1 Вложимость графов в трехмерное пространство
- •3.7.2 Планарные графы. Формула Эйлера
- •3.7.3 Следствия из формулы Эйлера
- •3.7.4 Гомеоморфные графы. Критерий планарности
- •3.8 Раскраски графов
- •3.8.1 Хроматическое число графа
- •3.8.2 Хроматическое число 2-дольного графа. Критерий 2-дольности
- •3.8.3 Некоторые оценки хроматического числа
- •3.8.4 Раскраски планарных графов
- •3.8.5 Реберная раскраска графа
- •3.9 Паросочетания
- •3.9.1 Паросочетания
- •3.9.2 Теорема Холла о свадьбах
- •3.10 Сети
- •3.10.1 Основные понятия
- •3.10.2 Потоки в сетях
- •3.10.3 Сетевое планирование
- •ПРОДОЛЖЕНИЕ ОГЛАВЛЕНИЯ
- •4 ЭЛЕМЕНТЫ ЧИСЛЕННЫХ МЕТОДОВ
- •4.1 Математическое моделирование и вычислительный эксперимент
- •4.2 Метод Гаусса решения систем линейных алгебраических уравнений. Плохая обусловленность и анализ ошибок. Влияние погрешностей округления
- •4.3 Итерационные методы решения систем линейных алгебраических уравнений. Метод простых итераций и метод Зейделя
- •4.3.1 Основные понятия
- •4.3.2 Метод простой итерации. Описание метода
- •4.3.3 Некоторые сведения о векторах и матрицах
- •4.3.4 Условия и скорость сходимости метода простой итерации
- •4.3.5 Приведение системы (1) к виду (2)
- •4.4 Интерполирование алгебраическими многочленами. Интерполяционный многочлен Лагранжа
- •4.4.1 Постановка задачи
- •4.4.2 Интерполяционная формула Лагранжа. Представление и оценка остатка
- •4.4.3 Практическое применение интерполяции
- •4.5 Конечные разности. Интерполяционный многочлен Ньютона
- •4.5.1 Конечные разности
- •4.5.2 Интерполяционный многочлен Ньютона
- •4.5.3 Линейная интерполяция
- •4.6 Многочлены Чебышева на отрезке [-1, 1]. Интерполирование сплайнами
- •4.7 Численное интегрирование
- •4.7.1 Формулы прямоугольников
- •4.7.2. Формула трапеций
- •4.7.3. Формула Симпсона (метод параболических трапеций)
- •4.7.4 Квадратурные формулы наивысшей алгебраической степени точности (квадратурные формулы Гаусса)
- •4.8 Численное решение нелинейных уравнений
- •4.8.1. Отделение корней
- •4.8.2 Метод деления отрезка пополам
- •4.8.3 Метод простой итерации (метод последовательных приближений)
- •4.8.4. Метод Ньютона (метод касательных)
- •4.8.5 Метод секущих
- •4.8.6 Метод хорд
- •4.9 Итерационные методы решения систем нелинейных уравнений
- •4.9.1 Метод простой итерации
- •4.9.2 Метод простой итерации для системы двух уравнений
- •4.9.3 Метод Ньютона
- •4.9.4 Метод Ньютона для системы двух уравнений
- •4.10 Численные методы решения задачи Коши для обыкновенного дифференциального уравнения
- •4.10.1 Метод Эйлера
- •4.10.2 Методы Рунге–Кутта
- •4.11 Постановка задачи линейного программирования. Геометрическая интерпретация и графическое решение задачи линейного программирования
- •4.11.1 Предмет математического программирования
- •4.11.2 Основная задача линейного программирования
- •4.11.3 Геометрический смысл системы линейных неравенств
- •4.11.4 Графический метод решения задач линейного программирования
- •4.12 Симплексный метод решения задачи линейного программирования. Двойственность в линейном программировании
- •4.12.1 Свойства решений задачи линейного программирования (ЗЛП)
- •4.12.2 Общая идея симплексного метода
- •4.12.3 Построение начального опорного плана
- •4.12.4 Признак оптимальности опорного плана. Симплексные таблицы
- •4.12.5 Переход к нехудшему опорному плану. Симплексные преобразования
- •4.13 Разностные методы
- •4.13.1 Основные понятия
- •4.13.2 Сетки и сеточные функции
- •4.13. 3 Аппроксимация простейших дифференциальных операторов
- •4.13.4 Разностная задача
- •4.13.5 Устойчивость
- •4.13.6 Связь аппроксимации и устойчивости со сходимостью
- •4.13.7 Явные и неявные разностные схемы
- •ОГЛАВЛЕНИЕ
- •Лабораторная работа 5. Задача коммивояжера
- •ПРОДОЛЖЕНИЕ ОГЛАВЛЕНИЯ
- •2.1. Метод Гаусса решения систем линейных алгебраических уравнений
- •2.2. Итерационные методы решения систем линейных алгебраических уравнений. Метод простых итераций и метод Зейделя
- •2.2.1. Метод простых итераций
- •2.2.2 Метод Зейделя
- •2.3. Интерполирование алгебраическими многочленами. Интерполяционный многочлен Лагранжа
- •2.3.1. Постановка задачи
- •2.3.2 Интерполяционный многочлен Лагранжа
- •2.3.3 Практическое применение интерполирования. Оценка погрешности интерполяционного многочлена Лагранжа
- •2.4 Конечные разности. Интерполяционный многочлен Ньютона
- •2.4.1 Конечные разности
- •2.4.2 Первая интерполяционная формула Ньютона (для интерполирования вперед)
- •2.4.3 Вторая интерполяционная формула Ньютона (для интерполирования назад)
- •2.5 Интерполирование сплайнами
- •2.6 Численное интегрирование
- •2.6.1 Метод средних прямоугольников
- •2.6.2 Формула трапеций
- •2.6.3 Формула Симпсона (метод параболических трапеций)
- •2.7 Численное решение нелинейных уравнений. Отделение корней. Метод половинного деления. Метод простой итерации
- •2.7.1 Отделение корней
- •2.7.2 Метод половинного деления
- •2.7.3 Метод простой итерации (метод последовательных приближений)
- •2.7.4 Практический критерий сходимости (когда надо прекращать итерации)
- •2.8 Итерационные методы решения нелинейных уравнений. Метод Ньютона. Метод секущих. Метод хорд
- •2.8.1 Метод Ньютона (метод касательных)
- •2.8.2 Метод секущих
- •2.8.3 Метод хорд
- •2.9 Итерационные методы решения систем нелинейных уравнений
- •2.9.1 Метод простой итерации для системы двух уравнений
- •2.9.2 Метод Ньютона для системы двух уравнений
- •2.10.1 Метод Эйлера
- •2.10.2 Метод Рунге-Кутта
- •2.11 Графическая интерпретация и графическое решение задачи линейного программирования
- •2.11.1 Основная задача линейного программирования
- •2.11.2 Графическая интерпретация задачи линейного программирования
- •2.11.3 Графическое решение задачи линейного программирования
- •2.12 Симплексный метод решения задачи линейного программирования
- •2.13 Метод сеток для уравнения параболического типа
- •2.13.1 Общие сведения
- •2.13.2 Постановка задачи
- •2.13.3 Разностные схемы
- •2.13.4 Оценки погрешностей
- •2.14 Метод сеток для уравнения гиперболического типа
- •ОГЛАВЛЕНИЕ
- •1 Операции над множествами. Алгебра множеств. Декартово произведение множеств
- •2 Отображения множеств. Бинарные отношения на множествах
- •3 Комбинаторика и мощности множеств
- •6 Расстояния в графах
- •7 Деревья и остовы
- •8 Эйлеровы графы. Критерий эйлеровости. Планарные графы. Формула Эйлера
- •9 Раскраски графов. Хроматическое число графа
- •10 Сети и потоки в сетях
- •Тесты по разделу «ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ»
- •ЭЛЕМЕНТЫ ЧИСЛЕННЫХ МЕТОДОВ
- •1 Численные методы решения систем линейных алгебраических уравнений
- •2 Интерполирование алгебраическими многочленами
- •3 Численное интегрирование
- •4 Численные методы решения нелинейных уравнений и систем нелинейных уравнений
- •5 Численное решение обыкновенных дифференциальных уравнений первого порядка
- •6 Линейное программирование
- •7 Численное решение уравнений с частными производными
- •Тесты по разделу «ЭЛЕМЕНТЫ ЧИСЛЕННЫХ МЕТОДОВ»
- •ОГЛАВЛЕНИЕ
- •ПРОГРАММА ДИСЦИПЛИНЫ
- •СПИСОК ВОПРОСОВ К ЗАЧЕТУ ПО ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКЕ
- •СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
3 ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ
3.1Основные определения и типы графов
3.1.1Основные понятия
Пусть V – конечное непустое множество и Е V E = {{u, v} u,v V, u≠v} – множество его двухэлементных подмножеств. Пара G = (V, E) называется графом. Множество V = V(G) при этом называется множеством вершин графа G, а его элементы – вершинами; множество Е = Е(G) называется множеством ребер графа G, а его элементы – ребрами. И вершины, и ребра графа G называются его элементами. Поэтому если u – вершина графа G, а е – ребро G, то вместо u V(G), e E(G) можно писать u G, e G.
Если e = {u, v} – ребро графа G (пишут также е = uv), то вершины u и v называются концами ребра е.
Графы удобно изображать в виде рисунков, на которых вершинам соответствуют отмеченные точки (или кружочки), а ребрам – непрерывные линии, соединяющие соответствующие вершины (см. рис. 1).
Вершины u и v графа G называется смежными, если Рис. 1
{u, v} E(G), т.е. если они соединены ребром. Два ребра, в свою очередь, называются смежными, если они имеют общий конец. Если вершина v является концом ребра e, то v и e назы-
ваются инцидентными.
Мощность V(G) множества вершин V(G) называется порядком графа G и обозначается G . Если V(G) = n и E(G) =m, то граф G называется (n,m)-графом.
3.1.2 Основные типы графов
Граф называется пустым, если E(G) = , т.е., если в нем нет ребер. Пустой граф порядка n обозначается 0n. Граф 01 называется тривиальным. Граф, в котором любые две вершины соединены ребром называется полным. Полный граф порядка n обозначается Kn
(рис. 2-5).
|
K2 |
|
|
|
|
|
|
|
|
K3 |
|
K4 |
|
K5 |
|
|
|
|
|
|
|||
|
|
||||||
|
|
|
|
|
|
|
|
Рис. 2 |
Рис. 3 |
Рис. 4 |
Рис. 5 |
||||
75
Нетрудно подсчитать, что граф Kn им еет n(n–1)/2 ребер.
Граф такого вида, как на рис. 6, называется простой цепью. Простая цепь порядка n обозначается Pn (на рисунке 6 изображена цепь P4). Простая цепь Pn имеет n – 1 ребер.
Замкнутые цепи, т.е. такие графы, как на рис. 7, называются простыми циклами. Простой цикл порядка n обозначается Cn (на рис. 7 изображена простая цепь С7). Понятно, что простая цепь Cn имеет столько же ребер, сколько и вершин, т.е. n.
Графы, такие как на рис. 8, называются колесами. Колесо порядка n+1 обозначается Wn (на рис. 3 изображено колесо W7); оно имеет 2n ребер.
Рис. 6 Рис. 7
|
Рис. 8 |
|
Граф называется двудольным, если множество его вершин |
|
|
можно разбить на два непустых подмножества (доли) так, что ни- |
|
|
какие две вершины одной доли не являются смежными. (Анало- |
|
|
гично определяются трехдольные, четырехдольные и т.д. графы.) |
|
|
Таким образом, в двудольном графе смежными могут быть только |
|
|
Рис. 9 |
||
вершины из разных долей (не обязательно каждая с каждой). При- |
||
|
||
|
||
мер двудольного графа см. на рис. 9. |
|
Если же в двудольном графе любые две вершины из разных долей соединены ребром, то такой граф называется полным двудольным. Полный двудольный граф с n вершинами в одной доле и с m вершинами – в другой обозначается Kn,m. См. примеры (рис. 10-12):
|
K2,2 |
|
K2,3 |
|
K3,3 |
|
|
|
|
|
|
Рис. 10 |
Рис. 11 |
Рис. 12 |
|||
Графы K1,n называется звездными графами, или звездами.
Легко видеть, что граф Kn,m является (n+m, nm)-графом, т.е. имеет n+m вершин и nm ребер. Понятно, что существуют графы, которые можно одновременно отнести к нескольким типам. Например, K3 = C3, K2 = P2, K2, 2 = C4, K4 = W3.
76
3.1.3 Обобщения понятия графа
Определение графа в п. 3.1.1 предполагает, что любая пара вершин может быть соединена не более, чем одним ребром. Однако, существуют задачи и примеры графов, когда необходимо допускать существование нескольких ребер между одной и той же парой вершин. Такие ребра называются кратными. Граф с кратными ребрами называется мультиграфом (рис. 14). Графы, соответствующие исходному определению (в тех случаях, когда нужно подчеркнуть, что в них отсутствуют кратные ребра), называются простыми графами (рис. 13). Кроме того, порой приходится рассматривать ребра вида {v, v}, соединяющие вершину v саму с собой. Такие ребра называются петлями. Мультиграф с петлями называется
псевдографом (рис. 15.).
простой граф |
|
мультиграф |
|
псевдограф |
|
|
|
|
|
Рис. 13 |
|
Рис. 14 |
|
Рис. 15 |
Пара (V, E), где V – непустое множество, а E V2 , называется ориентированным графом (или кратко: орграфом). Ребра такого графа представляют собой ориентированные (т.е. упорядоченные) пары
вида (u, v). При этом, вершина u называется началом ребра, а v – концом. Ориентированные ребра называются дугами и изображаются в виде линий со стрелками, указывающими на-
правление |
от |
начала |
ребра |
к |
концу |
(рис. 16). |
|
|
|
|
Рис. 16 |
|
|
|
|
|
Дуги (u, v) и ( v, u), соединяющие одну и ту же пару
вершин, но имеющие противоположные направления, называются симметричными. Можно рассматривать не только простые орграфы, но также ориентированные муль-
ти- и псевдографы.
Иногда при решении некоторых задач ребрам и (или) вершинам ставят в соответствие некоторые числа. Независимо от их конкретного смысла, такие числа называют весами (вес вершины, вес ребра), а полученный граф называется взвешенным графом.
Как правило, при изучении тех или иных вопросов, заранее оговаривается (или ясно
77
из контекста) о каких графах идет речь. В этом случае их просто называют графами без приставок «мульти-», «псевдо-» и т.д.
Если не оговорено противное, то везде далее «граф» будет означать «простой граф».
3.1.4 Изоморфные графы
Одной из особенностей графов является то, что при их изображении на плоскости совершенно не важно, как расположены вершины друг относительно друга. Поэтому одному и тому графу могут соответствовать различные его изображения. Кроме того, именно такие рисунки, представляющие собой простейший способ задания графа, зачастую и называют графами. Чтобы отличать рисунки, отвечающие одному и тому же графу, от рисунков, изображающих различные графы, введем следующее понятие.
Определение. Два графа G и H называются изоморфными, если существует биекция f: V(G) → V(H), сохраняющая смежность, т.е. такое биективное отображение, при котором образы вершин v и u графа G смежны в H тогда и только тогда, когда u и v смежны в графе G. Отображение f, обладающее указанным свойством, называется изоморфизмом.
Если графы G и H изоморфны, то пишут G H.
Например, все три графа на следующих рисунках изоморфны друг другу (изоморфизм определяется нумерацией вершин) (рис. 17-19).
Рис. 17 |
Рис. 18 |
Рис. 19 |
А на следующих трех |
рисунках представлены |
попарно неизоморфные графы |
(рис. 20-22). |
|
|
Рис. 20 |
Рис. 21 |
Рис. 22 |
78
