Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Structural mechanics

.pdf
Скачиваний:
0
Добавлен:
24.11.2025
Размер:
17.47 Mб
Скачать

As a result, linear and angular deformations are calculated by the formulas:

x

u

z

2w

,

 

y

 

v

z

2w

,

x

x2

 

y

y2

 

 

 

 

 

 

 

 

 

 

 

 

u

 

 

v

2z

 

 

2w

 

 

 

 

xy

 

 

 

 

 

 

 

 

.

 

 

 

y

 

 

x y

 

 

 

 

 

 

 

x

 

 

 

 

 

 

Since z 0 , the generalized Hooke law, connecting stresses and strains, is written as:

x

 

 

E

 

x y ,

y

 

 

 

 

E

 

y x ,

1

 

2

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

xy G xy

E

 

 

 

 

xy ,

 

 

 

 

 

2 1

 

where is the Poisson ratio.

The normal and tangential stresses caused by the bending of the plate linearly vary along the thickness of the plate and are calculated through

the curvature

2w

,

 

2w

 

 

and torsion

 

 

 

2w

 

of the middle surface ac-

x2

 

y2

 

 

 

x y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cording to the formulas:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

E z

 

 

2w

 

2w

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

x

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E z

 

 

 

2w

 

 

 

 

2w

 

 

 

xy

E z

 

2w

.

y

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

2

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

1

 

 

y

 

 

 

x

 

 

 

 

 

 

 

 

 

 

1 x y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bending moments

M x

 

 

and

M y

and torque

 

M xy

 

per unit length

of the plate section are calculated through the corresponding stresses.

491

Figure 15.19, c shows the distribution of forces along the faces of an elementary prism dx dy h . In order not to clutter the drawing, stresses,

bending moments and torques are not shown on the faces x 0 and y 0 . On these faces, the increments of stresses are equal to zero

15.13. Stiffness Matrix Formation Example

of the Rectangular Plate Element

In this example, the finite element of a rigid plate is used.

1. Each node of the plate finite element has three degrees of freedom: w – vertical displacement (deflection),

w – angle of rotation about the axis x ,

y

w – angle of rotation about the axis y .

x

In the directions of these displacements, we impose additional links and thus obtain the primary system of the displacement method (Figure 15.20).

Figure 15.20

It is necessary to form a matrix in the local coordinate system, which would make it possible to transform the vector of nodal displacements

Z into vector of nodal reactions RZ .

We define the deflections function w(x, y) of the element in the form of a polynomial with 12 arbitrary constants. It must identically satisfy

492

the homogeneous (load acts in nodes) differential equation of the deformed plate surface:

 

 

 

4w

2

2w

 

 

 

4w

0 .

 

 

 

 

 

 

 

 

x4

x2 y2

 

y4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us assume that:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w(x, y) a a

2

x a y a

4

x

2 a x y a

6

y2

a

7

x3

 

 

1

 

3

 

 

 

 

5

 

 

 

(15.43)

a

 

x2 y a x y2

a y3

a x

3 y a x y3,

 

8

 

 

 

 

 

9

 

10

 

 

 

 

11

 

12

 

 

 

where ai – unknown independent parameters, which in the future must be expressed in terms of Z .

2. Angular displacements

w

and

 

w

are determined uniquely by

 

 

x

 

 

 

y

 

the expression

w(x, y) . Then for any point of the element the displace-

ment vector can be determined by the dependence:

 

 

 

u L a ,

(15.44)

where

 

 

 

w

,

w T

u

w,

y

 

;

 

 

 

 

 

x

L – coefficient matrix of dimension 3 by 12:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L=

1

 

x

y

 

x2

xy

y2

x3

 

x2y

xy2

 

y3

x3y

xy3

 

 

 

1

 

 

x

2y

 

 

x2

2xy

 

3y2

x3

3xy2

 

 

 

 

-1

 

 

-2x

-y

 

-3x2

 

-2xy

-y2

 

 

-3xy2

-y3

 

3. The displacements vector u

allows us to find the displacements of

all element points , including nodal ones, having coordinates

( x 0 ,

y 0 ),

( x a ,

y 0 ),

( x a ,

y b ),

( x 0 ,

y b ). Therefore, us-

ing the expression (15.44), we can establish the relationship between the vectors Z and a :

493

Z H a ,

(15.46)

where H is the transformation matrix of dimension 12 by 12:

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

-1

 

 

 

 

 

 

 

 

 

 

 

 

1

a

 

a2

 

 

 

a3

 

 

 

 

 

 

 

 

1

 

a

 

 

 

a2

 

 

a3

 

H =

 

-1

 

-2a

 

 

 

-3a2

 

 

 

 

 

1

a

b

a2

ab

 

b2

a3

a2b

ab2

b3

a3b

ab3

 

 

 

1

 

a

 

2b

 

a2

2ab

3b2

a3

3ab2

 

 

-1

 

-2a

-b

 

 

-3a2

-2ab

-b2

 

-3a2b

-b3

 

1

 

b

 

 

 

b2

 

 

 

b3

 

 

 

 

 

1

 

 

 

2b

 

 

 

3b2

 

 

 

 

-1

 

 

-b

 

 

 

 

-b2

 

 

-b3

4. From (15.46) it follows that:

 

 

 

 

 

 

 

 

 

 

 

 

a H 1 Z .

 

 

 

(15.47)

5. The displacements vector u using expressions (15.44) and (15.47) is represented in the form:

u L H 1 Z.

(15.48)

6. After determining the displacement vector, one can find the vector

of generalized relative deformations k , whose components are the curvature and torsion of the middle surface of the plate:

 

 

2w

 

2w

 

2w

 

k

 

x2

,

y2

, 2

 

 

T .

(15.49)

x

 

 

 

 

 

y

 

Performing the appropriate differentiation, we obtain:

k B a B H 1 Z ,

(15.50)

494

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

6x

2y

 

 

6xy

 

B=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2x

6y

 

6xy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

4x

4y

 

6x2

6y2

7. Linearly distributed (per unit length of the plate section) bending moments and torques for isotropic plates are calculated by the formulas:

2w

 

 

2w

,

 

M x D

 

 

y2

 

 

x2

 

 

 

 

 

 

 

2w

 

2w

,

(15.51)

M y D

y2

 

x2

 

 

 

 

 

 

 

 

M xy D 1

 

2w

,

 

 

x y

 

 

 

 

 

 

 

 

 

where D denotes the value of linear bending stiffness of the plate, the so-called cylindrical stiffness:

D

E h3

 

 

.

 

2

 

 

12 1

 

 

 

Bending moments corresponding to positive curvatures are considered positive.

In the matrix form of notation, the relationship of the vector of gener-

alized internal forces M with the vector of relative strains k

takes the

form:

 

M C k ,

(15.52)

where C is the matrix of physical constants:

 

495

 

 

 

 

 

 

1

 

0

 

 

 

1

0

 

C D

.

 

0

0

1

 

 

2

 

 

 

 

 

The expression of the vector of generalized internal forces M through generalized displacements Z can be obtained by substituting expression k from (15.50) in the dependence (15.52):

M C B H 1 Z .

(15.53)

8. Variation of the potential energy density of the element deformation

 

 

 

T

 

(15.54)

A k

 

M ,

taking into account expressions (15.50) and (15.53), can be written as follows:

A Z T H 1 T BT C B H 1 Z .

For the entire volume of the finite element, the variation of the potential strain energy will have the form:

A

Adv Z T H 1 T BT C B H 1Z dv

(15.55)

V

 

v

 

 

 

 

or, since H and Z are independent of the coordinates x

and

y ,

 

 

T

T

 

 

 

(15.56)

A Z

 

H 1

 

BT C B dv H 1

Z .

 

 

 

 

v

 

 

 

496

9. Virtual work of nodal forces F on changes (variations) of nodal displacements Z is:

W Z T

F .

(15.57)

In accordance with the principle of virtual displacements A W , therefore equalities (15.55) and (15.56) allow us to relate the vector of nodal forces F and the vector Z :

 

T

 

 

H 1

 

(15.58)

F

H 1

 

BT C B dv

Z .

 

 

v

 

 

 

 

10. The stiffness matrix (reaction matrix) of the finite element RE allows us to express the force vector F through the vector Z :

F RE Z .

(15.59)

Comparing expressions (15.58) and (15.59), we find the stiffness matrix of the finite element:

RE H 1 T BT CBd H 1 .

The matrix RE (lower triangle) for the rectangular element of the plate is presented in table 15.2.

497

Table 15.2

498

Table 15.2 (сontinuation)

499

Table. 15.2 (ending)

Note: For all elements of the matrix, the common factor

D

is

30ab

used, where D is the cylindrical stiffness;

a

;

b .

 

 

 

b

 

a

 

 

500

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]