Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Structural mechanics

.pdf
Скачиваний:
0
Добавлен:
24.11.2025
Размер:
17.47 Mб
Скачать

From the first of them it follows that if det A 0 , then:

S A 1 F .

The condition that the determinant of the matrix A is equal to zero is a sign that the calculated system is partially geometrically variable or instantly variable.

The second group of equations allows you to calculate the displacement vector z:

z A 1 T D S .

In the absence of external load, we obtain:

S 0 and

z

A 1

T

 

 

.

These relations confirm the well-known property of statically determinate systems: a change in temperature, displacements of supports or inaccuracy in the manufacture of elements in statically determinate systems do not cause internal forces, but cause only displacements.

14.13. General Equations for a Bar

Consider a frame loaded with a nodal load (Figure 14.16, a), and a fragment of its discrete scheme (Figure 14.16, b). The directions of the nodal forces and the forces of interaction in the sections shown in the figure correspond to the directions of the axes of the general coordinate system.

We establish the relationship of the load in the nodes i, j and the ef-

forts in the sections adjacent to the nodes. This dependence is easier to obtain first in the local coordinate system (for the bar i j – the system

), and then, using the rules of linear transformations, in the general system XY.

401

Figure 14.16

The directions of efforts in the end sections of the bar and nodal forces oriented along the axes of the local coordinate system are shown in Figures 14.17, a, b, c.

Figure 14.17

In general, the efforts vectors at the beginning of the bar

SB NB , QB , MB T

and at the end of it

SE NE , QE , M E T

contain three components each. In relation to the bar, these forces are external and dependent; they are connected by three equations of equilibrium:

402

 

0,

NB NE 0,

 

 

NB NE N;

 

0,

 

QB QE 0,

 

 

QB QE Q;

 

M B 0,

 

M B M E Q l 0,

 

Q

1 M E M B .

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

S

If the

stress

state

of

the

bar is

characterized by a vector

N, MB , M E T

,

then it

is

necessary

to

establish the relationship

 

 

 

 

S.

 

 

 

 

 

 

 

 

 

 

between SB , SE and

In the matrix form of recording, this depend-

ence is determined in this way:

 

 

 

 

 

 

 

 

 

 

 

NB

 

1

0

0

 

 

 

 

 

 

 

 

Q

 

 

0

1 l

1 l

 

N

 

 

 

 

 

B

 

 

1

0

 

 

 

SB

M B

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

M B .

 

 

SE

NE

 

1

 

M

 

 

 

 

 

QE

 

0

1 l

1 l

 

 

E

 

 

 

 

 

 

 

 

 

0

1

 

 

 

 

 

 

 

 

M E

 

0

 

 

 

 

Connecting these efforts with the positive directions of the nodal load (Figures 14.17, a, c), we obtain the relationship between the nodal load

vector F* and the vector S in the form:

 

 

F

 

1

0

 

 

i

 

 

 

Fi

 

0

1 l

 

 

m

 

0

1

 

i

 

F

 

F

 

 

1

0

 

 

j

 

 

 

 

 

F

 

 

0

1 l

 

 

j

 

0

0

 

 

m

 

 

 

 

 

j

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1 l

 

 

 

N

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

a

 

(14.15)

0

 

M B

 

S.

 

 

M

 

 

 

 

 

 

1 l

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

The first three components of the vector F* determine the load on the node at the beginning of the bar, and the next three – at the end of the bar.

403

Through a* , the bar equilibrium matrix is denoted in the local coordinate system:

 

1

0

0

 

 

0

1 l

1 l

 

 

0

1

0

 

 

 

a*

1

0

0

.

 

 

 

0

1 l

1 l

 

 

 

 

0

0

1

 

Upon transition to the general coordinate system, the equilibrium equations of the bar (14.15) are transformed.

Consider the problem of transforming the coordinates of the vector of nodal forces in the transition from a local coordinate system to a common one.

From the equations of projections of linear forces in the i-th node on the axis of the general coordinate system (Figure 14.18) it follows that:

Fix Fi cos Fi sin ,

Fi y Fi sin Fi cos .

Figure 14.18

404

Given that the moment mi remains unchanged when the coordinate

system is rotated, we present the expression for the transformation of the forces of the i-th node in the form:

 

F x

cos

sin

0

F

 

 

 

F

 

i

 

 

i

 

CT F*,

 

 

sin

cos

0

 

 

(14.16)

F y

F

 

i

 

i

 

 

0

 

 

i

 

 

i

 

 

m

0

1

m

 

 

 

 

i

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where CT is matrix of the rotation operator when the vector is rotated through an angle clockwise.

Through C it is customary to denote the matrix of the operator of rotation of the vector counterclockwise.

Similar relations hold for forces in the j-th node:

Fj CT Fj* .

Then, for the load vector in the nodes connected by the bar, the rotation transformation will be performed using the expression:

 

 

 

 

 

CT

0

 

 

 

* ,

 

(14.17)

 

 

 

 

F

 

 

 

 

F

* V T F

 

 

 

 

 

 

 

0

CT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

sin

0

 

 

 

0

0

0

 

 

 

 

 

 

 

 

 

 

cos

0

 

 

 

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin

 

 

 

 

 

 

 

 

0

 

0

 

1

 

 

 

0

0

0

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

0

 

0

 

0

 

 

 

cos

sin

0

 

 

 

 

 

 

 

 

 

 

 

0

 

0

 

0

 

 

 

sin

cos

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

0

 

0

 

 

 

0

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

405

So, if equality (14.15) is multiplied on the left by the matrix V T , then in the general coordinate system the vector of nodal forces F will be expressed through the vector of efforts S in the following form:

F a S ,

(14.18)

where a is a bar equilibrium matrix in the general coordinate system, i.e.:

 

 

 

a V T a*

 

 

 

 

or

 

 

sin

 

 

sin

 

cos

 

 

 

 

 

 

 

l

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin

 

cos

 

 

cos

 

 

 

 

 

 

l

 

 

l

 

 

 

 

 

 

0

 

1

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

.

 

 

 

 

 

 

 

 

 

cos

 

sin

 

 

sin

 

 

 

 

 

 

l

 

 

l

 

 

 

 

 

 

sin

 

cos

 

 

cos

 

 

 

l

 

l

 

 

 

 

 

 

 

 

0

 

0

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this form, the equilibrium matrix is written for the bar with both pinched ends. As follows from (14.18), equilibrium matrices for bars with other conditions of supporting the ends can be obtained from this one by deleting rows and columns corresponding to zero forces in the bar.

In particular, if the left end of the bar has a hinge support ( M B 0 ),

and the other end is pinched, the equilibrium matrix is obtained from the original by deleting the second column and the third row. For bars with different options of support fastenings, the equilibrium matrices in the general coordinate system are written in the Table 14.2.

Let us determine the relationship between the deformations of the bar and the displacements of its ends. We write the displacement vector in the general coordinate system for the rod rigidly fixed at the ends in the form:

406

z zBx , zBy , B , zEx , zEy , E, T ,

where, as before, the indices “ B ” and “ E ” denote the beginning and ending of the bar. The displacements of the bar ends are the displacements of the nodes that it connects.

Figure 14.19 shows the initial and deformed positions of the bar in the local coordinate system.

Figure 14.19

Table 14.2

Option

Matrix

Matrix k

 

 

1

 

 

 

 

2

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

sin

 

sin

 

 

 

 

 

 

 

 

 

 

K N

cos

 

l

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

cos

 

 

 

 

 

 

 

 

 

 

 

 

sin

 

EA

 

 

 

 

 

 

 

 

 

 

 

 

l

 

l

 

 

 

 

0

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

MH

 

 

x

 

0

 

 

0

 

l

4EI

 

 

 

 

 

 

 

 

 

 

 

 

 

0

2EI

N

 

 

 

 

 

 

sin

sin

 

 

 

 

l

 

l

 

 

 

 

 

cos

 

 

 

0

 

2EI

4EI

S

T

N, MB , ME

 

l

 

l

 

l

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

T

l, B , E

 

 

sin

cos

 

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

l

l

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

0

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

407

Table 14.2 (ending)

 

 

1

 

 

 

2

 

 

 

 

 

 

 

cos

 

sin

 

 

 

MK N

 

l

 

 

 

 

 

 

 

cos

 

 

 

 

 

sin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

 

x

 

 

 

 

N

 

 

 

 

cos

sin

 

 

 

 

 

 

 

l

 

S T N , M E

 

 

 

 

 

 

sin

 

 

 

T

l , E

 

cos

 

 

 

 

l

 

 

 

 

 

 

0

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

sin

3

 

y

N

 

 

l

 

 

 

 

 

 

 

 

cos

 

 

 

 

sin

 

 

 

 

 

 

 

 

 

l

 

MH

 

 

x

 

0

 

1

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin

S T

N , M B

 

cos

 

l

 

 

 

l , B

 

 

 

 

 

T

 

 

sin

cos

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

4

 

y

 

N

 

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin

 

 

 

S N

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

y

 

 

1/ l

1/ l

 

MH

 

 

 

MK

 

 

 

 

1

 

0

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S T M B , M E

 

 

1/ l

1/ l

 

 

 

 

 

 

0

 

1

 

 

T

B , E

 

 

 

 

 

 

 

 

 

 

 

3

EA

 

l

3EI

0

l0

EA

 

l

3EI

0

l0

EAl

4EI

 

2EI

 

l

l

 

 

2EI

4EI

 

l

 

l

 

 

 

 

408

The elongation of the bar and the angles of rotation of its end sections

are components of the strain vector:

 

 

 

E

T .

l, B ,

As follows from the Figure 14.19:

 

 

l uE uB ,

 

B ( B ) B

E B ,

 

 

l

E E E E B .

 

 

l

The direction of the rotation angle

B

does not coincide with the

positive direction of the moment M B ,

therefore the expression ( B )

is accepted as negative. Using the matrix formula for writing, we get:

 

 

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

0

1

0

0

 

1

1

0

1

 

 

l

 

 

l

0

 

1

0

0

1

 

 

l

 

 

l

 

uE

 

 

 

 

vB

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

B

 

* T *

 

 

0

a

,

(14.19)

 

 

z

 

uE

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

vE

 

 

 

 

 

 

E

 

 

 

 

where z* uB vB B uE vE E T – is vector of displacements of the

ends of the bar in the local coordinate system.

As in the case of operations with force vectors (14.17), the transformation of the coordinates of the vector z* when the axes are rotated

by an angle clockwise is performed using the matrix V T. Therefore, we can write that:

z V T z*.

409

Consequently,

z* V z.

Then, in the general coordinate system, geometric equations, which are conditions of the compatibility of displacements of nodes (end sections of the bar) and deformations of the bar, can be written in the form:

a*TV z aT z.

(14.20)

We turn further to the physical equations, which describe the relationship of the deformation of the rod with the forces in it. Previously (section 14.7), it was shown that for a linearly deformable bar, this rela-

tionship is represented as i Di Si (the index “i” corresponds to the

number of the bar), or in expanded form for a bar with rigidly fixed ends, without entering its number of designation, in the form:

 

 

 

 

 

l

0

 

 

l

 

 

 

 

 

EA

 

2l

 

 

 

 

0

 

 

6EJ

 

 

 

B

 

 

 

 

 

 

 

 

 

l

 

 

 

E

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

6EJ

 

 

 

 

 

 

 

0

 

 

 

 

 

N

 

l

 

dS,

 

M

 

 

6EJ

 

B

 

 

 

M

 

 

2l

 

E

 

 

 

 

 

 

 

 

 

6EJ

 

 

 

where d is the matrix of the internal compliance of the bar.

For bars with other conditions for joining nodes, physical dependencies are established using well-known methods for determining the end displacements. So, for a bar pivotally supported at the beginning and

pinched at the end, the relationship and S is obtained in the form:

 

 

 

 

 

l

 

 

l

 

 

 

 

 

 

 

EA

 

 

E

 

0

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

N

 

 

l

 

 

 

dS.

 

M E

 

 

 

 

 

 

3EJ

 

 

 

And for a bar with pinching at the beginning and a hinge support at the end: 410

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]