- •2. Строение атома. Ядерная модель атома. Квантово-механическое описание строения атома. Корпускулярно-волновой дуализм. Орбиталь.
- •3. Электронное строение атома. Квантовые числа n, l, ml, ms. Значение и физический смысл. Электронный слой (уровень). Электронные подуровни.
- •4. Электронная формула. Правила заполнения электронных орбиталей. Принцип Паули. Правило Гунда. Первое и второе правила Клечковского.
- •5. Электронное строение атомов и периодическое изменение свойств химических элементов. Периодическая система д.И. Менделеева. S-, p-, d- и f- элементы, их расположение в периодической системе.
- •8. Ковалентная химическая связь, её характеристики. Обменный и донорно-акцепторный механизмы образования ковалентной связи.
- •10. Понятия валентность атомов, валентные электроны, степень окисления атомов. Правила определения степени окисления элементов. Валентность атомов в основном и возбуждённом состояниях.
- •12. Водородная связь. Энергия водородной связи. Изменение физических свойств веществ вследствие образования водородных связей. Особенности свойств воды.
- •13. Кристаллы. Основные типы кристаллических решёток: атомная, молекулярная, ионная и металлическая. Связь строения и свойств кристаллов.
- •14. Электроотрицательность и основные типы химической связи. Ионная связь. Основные характеристики ионной связи.
- •15. Направленность химических связей и пространственное строение молекул. Концепция гибридизации орбиталей для определения конфигурации молекул (на примере атома углерода). -и - связи.
- •Ковалентные связи углерода
- •16. Межмолекулярные взаимодействия: ориентационное, индукционное, дисперсионное. Энергия межмолекулярного взаимодействия.
- •18. Гальванические элементы. Элемент Даниэля-Якоби. Концентрационные гальванические элементы. Расчет эдс и ∆g гальванических элементов.
- •23. Первый закон термодинамики. Энтальпия и внутренняя энергия. Стандартные условия. Стандартная энтальпия образования веществ.
- •24. Закон Гесса и следствия из него. Тепловой эффект химических реакций и фазовых переходов. Расчёт тепловых эффектов физико-химических процессов из стандартных теплот образования.
- •31. Гидролиз солей. Степень гидролиза и константа гидролиза. Расчёт водородного показателя (рН) растворов гидролизующихся солей.
- •33. Окислительно-восстановительные реакции (овр). Классификация овр. Межмолекулярные, внутримолекулярные реакции, реакции диспропорционирования. Окислитель. Восстановитель.
- •38. Агрегативная и седиментационная неустойчивость коллоидных растворов. Коагуляция. Порог коагуляции, коагулирующее действие электролитов, правило Шульце – Гарди.
14. Электроотрицательность и основные типы химической связи. Ионная связь. Основные характеристики ионной связи.
Одно из наиболее существенных свойств атомов элементов, определяющих, какая связь образуется между ними – ионная или ковалентная, - это электроотрицательность, т.е. способность атомов в соединении притягивать к себе электроны. Условную количественную оценку электроотрицательности дает шкала относительных электроотрицательностей. В периодах наблюдается общая тенденция роста электроотрицательности элементов, а в группах – их падения. Элементы по электроотрицательностям располагают в ряд, на основании которого можно сравнить электроотрицательности элементов, находящихся в разных периодах. Тип химической связи зависит от того, насколько велика разность значений электроотрицательностей соединяющихся атомов элементов. Чем больше отличаются по электроотрицательности атомы элементов, образующих связь, тем химическая связь полярнее. Провести резкую границу между типами химических связей нельзя. В большинстве соединений тип химической связи оказывается промежуточным; например, сильнополярная ковалентная химическая связь близка к ионной связи. В зависимости от того, к какому из предельных случаев ближе по своему характеру химическая связь, ее относят либо к ионной, либо к ковалентной полярной связи. Ионная связь является крайним случаем поляризованной ковалентной связи, когда общая электронная пара полностью принадлежит одному из атомов. В таком случае на одном из атомов реализуется полностью положительный заряд, а на другом - полностью отрицательный. Такой тип связи характерен для солей. Например, хлорид натрия - NaCl. Каждый из атомов предоставляет по одному электрону для образования общей электронной пары. Однако Cl полностью смещает к себе образовавшуюся электронную пару и тем самым приобретает полный отрицательный заряд, а Na, не имеющий в таком случае на внешнем электронном уровне ни одного электрона, имеет полный положительный заряд. Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости. Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов. Основные типы химической связи - ковалентная, ионная, водородная, металлическая. (вопрос 11)
15. Направленность химических связей и пространственное строение молекул. Концепция гибридизации орбиталей для определения конфигурации молекул (на примере атома углерода). -и - связи.
Пространственное строение молекул зависит от природы химической связи, возникающей между атомами, а следовательно, структуры их электронной оболочки. Так как в химической связи могут участвовать электроны s -, p -, d - и f - типа от каждого из взаимодействующих атомов, то от типа и числа электронов, а также от возможности образования гибридных связей зависит строение молекул. Часто химические связи образуются за счёт электронов, расположенных на разных атомных орбиталях (например, s – и р – орбитали). Несмотря на это, связи оказываются равноценными и расположены симметрично, что обеспечено гибридизацией атомных орбиталей. Гибридизация орбиталей – это изменение формы некоторых орбиталей при образовании ковалентной связи для достижения более эффективного перекрывания орбиталей. В результате гибридизации появляются новые гибридные орбитали, которые ориентируются в пространстве таким образом, чтобы после их перекрывания с орбиталями других атомов образующиеся электронные пары оказались максимально удалёнными друг от друга. Это сводит к минимуму энергию отталкивания электронов в молекуле. Гибридизация не является реальным процессом. Это понятие введено для описания геометрической структуры молекулы. Форма частиц, возникающих при образовании ковалентных связей, в которых участвуют гибридные атомные орбитали, зависит от числа и типа этих орбиталей. При этом σ – связи создают жёсткий «скелет» частицы:
Орбитали, участвующие в гибридизации. Тип гибридизации Пространственная форма молекулы Примеры
S,P sp – гибридизация Линейная BeCl2
s, p, p sp2 – гибридизация Треугольная (плоская тригональная) AlCl3
s, p, p, p sp3 – гибридизация Тетраэдрическая СH4
Если
электронные облака перекрываются по
линии, соединяющий центры атомов, то
такую ковалентную связь
называют сигма(
)-связью.
Ковалентная
связь, образующаяся путем бокового
перекрывания р-орбиталей
соседних углеродных атомов,
называется пи(
)-связью.
