Добавил:
chemist5734494@gmail.com Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
глюгонео пентозофосф.pptx
Скачиваний:
0
Добавлен:
16.11.2025
Размер:
454.98 Кб
Скачать

Глюконеогенез

Глюконеогенез – это синтез глюкозы из неуглеводных предшественников. Основной функцией ГНГ является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Процесс протекает в основном в печени и менее интенсивно в корковом веществе почек, а также в слизистой оболочке кишечника. Эти ткани могут обеспечивать синтез 80-100 г глюкозы в сутки.

Первичными субстратами (предшественниками) в ГНГ являются лактат, глицерол, большинство аминокислот. Включение этих субстратов в ГНГ зависит от физиологического состояния

организма.

Лактат – продукт анаэробного гликолиза, образуется в работающих мышцах и непрерывно в эритроцитах. Таким образом, лактат используется в ГНГ постоянно. Глицерол высвобождается при гидролизе жиров в жировой ткани в период голода- ния или при длительной физической нагрузке. Аминокислоты образуются в результате распада мышечных белков и используются в ГНГ при длительном голодании или продолжительной мышечной работе. Аминокислоты, которые при катаболизме превращаются в пируват или метаболиты цикла трикарбоновых кислот, могут рассматриваться как потенциальные предшественники глюкозы и носят название гликогенных.

Из всех аминокислот, поступающих в печень, примерно 30% приходится на долю аланина. Это объясняется тем, что при расщеплении мышечных белков образуются

аминокислоты, многие из которых превращаются сразу в пируват или сначала в оксалоацетат, а затем в пируват. Последний превращается в аланин, приобретая аминогруппу от других аминокислот. Аланин из мышц переносится кровью в печень, где снова пре- образуется в пируват, который частично окисляется и частично включается в ГНГ. Такая последовательность превращений приводит к формированию глюкозо-аланинового цикла

«Холостые» циклы в метаболизме углеводов

В нормальных условиях холостые циклы, вероятно, не имеют места, так как их появлению препятствуют реципрокные регуляторные механизмы (механизмы обратного направления). Всякий раз, когда преобладает катаболизм, то есть когда суммарный поток направлен в сторону гликолиза, фруктозодифосфатазная активность выключается. И наоборот, когда суммарный поток направлен в сторону глюконеогенеза, выключается фосфофруктокиназа.

Недавние исследования показали, однако, что иногда холостые циклы могут

происходить и в физиологических условиях, имея при этом вполне определенный биологический смысл — производство тепла. Любопытный пример подобного холостого цикла обнаружен у некоторых насекомых. В холодную погоду шмель не может летать до тех пор, пока он не прогреет свой «мотор»; температура мышц должна подняться у него примерно до 30 °С и поддерживаться на этом уровне за счет холостого цикла с участием фруктозо-6-фосфата и фруктозо-1,6-дифосфата и последующим гидролизом АТФ, который служит источником тепла. Полагают также, что холостые циклы, генерирующие тепло, имеют место, возможно, и у некоторых животных, пробуждающихся после зимней спячки, то есть в период, когда температура тела животного бывает гораздо ниже нормы.

Первой необратимой реакцией глюконеогенеза — является превращение пирувата в оксалоацетат под действием фермента пируваткарбоксилаза, CO2 и

АТФ. Реакция протекает в митохондриях, куда проникает пируват, и катализируется пируваткарбоксилазой по уравнению:

Пируват + НСО3- + АТФ → оксалоацетат + AДФ + Фi

Этот фермент в качестве кофактора, как и ферменты, усваивающие CO2, содержит, биотин.

Вторая необратимая стадия

На этой стадии образовавшийся в 1-й стадии оксалоацетат поступает из митохондрий в цитоплазму, где подвергается декарбоксилированию и фосфорилированию под влиянием фермента фосфоенолпируваткарбоксикиназы превращается в фосфоенолпируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат (ГТФ).

От фосфоенолпирувата до фруктозо-1,6-дифосфата все реакции гликолиза обратимы, поэтому молекулы образовавшегося фосфоенолпирувата используются для образования фруктозо-1,6- дифосфата теми же ферментами гликолиза.

Третья необратимая стадия

Третья необратимая стадия глюконеогенеза это — превращение фруктозо-1,6-дисфосфата во фруктозо-6-фосфат, необходимое для обращения гликолиза на рассматриваемой стадии, катализируется специфическим ферментом фруктозо-1,6-дисфосфатазой. Это — ключевой фермент в том смысле, что именно его присутствием определяется, способна ли ткань ресинтезировать гликоген из пирувата и триозофосфатов. Этот фермент имеется

впечени и почках, он был также обнаружен в поперечнополосатых мышцах. Считают, что

всердечной мышце и гладких мышцах он отсутствует.

Фруктозо-6-фосфат изомеризуется в глюкозо-6-фосфат глюкозофосфатизомеразой.

Четвёртая необратимая стадия

Четвёртая и последняя необратимая стадия глюконеогенеза это — превращение глюкозо-6-фосфата в глюкозу. Реакция катализируется другой специфической фосфатазой — глюкозо-6-фосфатазой (реакция идет в обход гексокиназной реакции). Она присутствует в печени и почках, но отсутствует в мышцах и жировой ткани. Наличие этого фермента позволяет ткани поставлять глюкозу в кровь.