
- •Министерство российской федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий
- •Оглавление
- •Глава 1. Электроснабжение и пожарная опасность электроустановок 4
- •Глава 2. Выбор и применение электрооборудования для взрыво- и пожароопасных зон и помещений с нормальной средой 41
- •Глава 3. Аппараты защиты в электроустановках 93
- •Глава 1 электроснабжение и пожарная опасность электроустановок
- •1.1. Общие сведения об электроснабжении и электроустановках
- •1.2. Общие сведения по проводам и кабелям
- •1.3. Причины пожароопасных отказов и загораний в электротехнических устройствах
- •Причины загораний проводов и кабелей
- •Причины загораний электродвигателей, генераторов и трансформаторов
- •Причины загораний осветительной аппаратуры
- •Причины загораний в распределительных устройствах, электрических аппаратах пуска, переключения, управления, защиты
- •Причины загораний в электронагревательных приборах, аппаратах, установках
- •Причины загораний комплектующих элементов
- •1.4. Вероятностная оценка пожароопасных отказов в электротехнических устройствах
- •1.5. Пожарная опасность комплектующих элементов электротехнических устройств
- •Глава 2
- •Нормативная оценка классов взрыво- и пожароопасных зон и их размеров
- •Аналитическая оценка классов взрыво- и пожароопасных зон и их размеров
- •2.2. Классификация взрывоопасных смесей по группам и категориям
- •2.3. Взрывозащищенное электрооборудование Классификация взрывозащищенного электрооборудования
- •Электрооборудование взрывозащищенное с видом взрывозащиты «взрывонепроницаемая оболочка»
- •Электрооборудование взрывозащищенное с защитой вида «е» (повышенной надежности против взрыва)
- •Электрооборудование взрывозащищенное с видом взрывозащиты «искробезопасная электрическая цепь»
- •Электрооборудование взрывозащищенное с видом взрывозащиты «масляное заполнение оболочки с токоведущими частями»
- •Электрооборудование взрывозащищенное с видом взрывозащиты «заполнение или продувка оболочки под избыточным давлением»
- •Электрооборудование взрывозащищенное с видом взрывозащиты «кварцевое заполнение оболочки»
- •Электрооборудование взрывозащищенное со специальным видом взрывозащиты
- •2.4. Маркировка взрывозащищенного электрооборудования
- •2.5. Зарубежное взрывозащищенное электрооборудование
- •2.6. Особенности выбора, монтажа, эксплуатации и ремонта взрывозащищенного электрооборудования
- •2.7. Особенности выбора, монтажа и эксплуатации электрооборудования пожароопасных зон и помещений с нормальной средой
- •2.8. Контроль за противопожарным состоянием электроустановок
- •Глава 3 аппараты защиты в электроустановках
- •3.1. Плавкие предохранители Принцип устройства и работы плавких предохранителей
- •Защитная характеристика предохранителя
- •Способы улучшения защитных характеристик предохранителей
- •Типы плавких предохранителей для установок напряжением до 1000 в
- •3.2. Автоматические выключатели (автоматы)
- •Устройство и принцип работы небыстродействующих автоматов
- •Защитные характеристики автоматов
- •Типы установочных автоматов
- •3.3. Тепловые реле
- •3.4. Выбор аппаратов защиты
- •Требования к аппаратам защиты
- •Iср.Эл.М 1,25Iмакс;
- •Iкз (к) / Iн.Тепл 6;
- •Iкз (к) / Iн.Тепл 3.
- •Селективность (избирательность) действия аппаратов защиты
- •Выбор мест установки аппаратов защиты в зависимости от условий пожарной безопасности и технических условий
- •3.5. Устройство защитного отключения (узо)
- •Глава 4 пожарная безопасность и методы расчета электрических сетей
- •4.1. Нагрев проводников электрическим током
- •4.2. Допустимая нагрузка на проводники по нагреву
- •4.3. Пожарная опасность короткого замыкания в электрических сетях
- •4.4. Противопожарная защита электрических сетей при проектировании
- •Расчет сетей по условиям нагрева. Выбор аппаратов защиты
- •Расчет сетей по потере напряжения
- •4.5. Противопожарная защита электрических сетей при монтаже и эксплуатации
- •4.6. Профилактика пожаров на вводах электрических сетей в здания и сооружения объектов агропромышленного комплекса
- •Глава 5 электродвигатели, трансформаторы и аппараты управления
- •5.1. Общие сведения об электродвигателях
- •5.2. Аварийные пожароопасные режимы работы электродвигателей
- •5.3. Пожарная опасность трансформаторов
- •5.4. Снижение пожароопасности электроизоляции обмоток элетродвигателей и трансформаторов
- •5.5. Пожарная опасность электрических аппаратов управления
- •Глава 6 электроосветительные установки
- •6.1. Электрические источники света
- •6.2. Осветительные приборы и светильники
- •6.3. Системы и виды электрического освещения
- •6.4. Расчет электрического освещения
- •6.5. Пожарная опасность осветительных приборов
- •6.6. Профилактика пожаров от осветительных приборов
- •Глава 7 заземление и зануление в электроустановках напряжением до 1000 в
- •7.1. Опасность поражения электрическим током
- •7.2. Заземление и зануление электроустановок как устройств электро- и пожарной безопасности
- •7.3. Устройство заземлений и занулений
- •7.4. Расчет заземляющих устройств
- •7.5. Защитные заземления и зануления во взрывоопасных зонах
- •7.6. Эксплуатация и испытания заземляющих устройств
- •Глава 8 молниезащита
- •8.1. Молния и ее характеристики
- •8.2. Пожаро- и взрывоопасность воздействия молнии
- •Воздействия прямого удара молнии
- •Вторичные воздействия молнии
- •8.3. Классификация зданий и сооружений по устройству молниезащиты Категории молниезащиты
- •Обязательность устройства молниезащиты
- •Требования к устройствам молниезащиты
- •8.4. Молниеотводы
- •Конструктивное выполнение молниеотводов
- •Зоны защиты молниеотводов
- •8.5. Защита зданий и сооружений от прямых ударов молнии Защита зданий и сооружений I категории
- •Защита зданий и сооружений II категории
- •Защита взрывоопасных наружных технологических установок и открытых складов
- •Защита зданий и сооружений III категории
- •8.6. Защита зданий и сооружений от вторичных воздействий молнии
- •8.7. Эксплуатация устройств молниезащиты Испытания и приемка в эксплуатацию устройств молниезащиты
- •Контроль состояния и обслуживание устройств молниезащиты
- •Глава 9 защита взрывоопасных производств от разрядов статического электричества
- •9.1. Общие представления об электризации
- •9.2. Воспламеняющая способность искр статического электричества и его физиологическое воздействие на организм человека
- •9.3. Приборы для измерения параметров статического электричества
- •9.4. Способы устранения опасности статического электричества
- •Заземление
- •Уменьшение объемного и поверхностного удельных электрических сопротивлений
- •Ионизация воздуха
- •Дополнительные способы уменьшения опасности от статической электризации
- •9.5. Эксплуатация устройств защиты от разрядов статического электричества
- •Глава 10 технико-экономическая эффективность решений противопожарной защиты электроустановок, молниезащиты и защиты от статического электричества
- •Приложения
- •Технические данные предохранителей
- •Технические данные автоматов серии а3100
- •Технические характеристики автоматов а3713б
- •Технические данные автоматов типа ап-50 с комбинированным расцепителем на переменный ток
- •Технические характеристики автоматов серии ва
- •Технические параметры однополюсных автоматов серии ае1000 и трехполюсных серии ае200
- •Технические данные магнитных пускателей серии пме и па
- •Допустимая потеря напряжения в осветительных и силовых сетях
- •Значение коэффициента с для определения (по упрощенной формуле) сечений проводников и потери напряжения в электропроводках
- •Коэффициенты использования вертикальных заземлителей ηв и горизонтальных соединительных полос ηг
- •Перечень стандартов на взрывозащищенное электрооборудование
- •Литература
- •129366, Москва, ул. Б. Галушкина, 4
7.4. Расчет заземляющих устройств
При проектировании заземляющих устройств прежде всего необходимо использовать естественные заземлители. Если их сопротивление растеканию тока rе, полученное измерением или по данным аналогичных случаев, окажется достаточным, другие заземлители не требуются. При недостаточном сопротивлении естественных заземлителей сопротивление искусственных заземлителей определяется по формуле
rиск rerз/(re-rз), (7.11)
где rз — требуемое сопротивление растеканию тока заземляющего устройства по ПУЭ (см. параграф 7.2).
При невозможности или нецелесообразности использования естественных заземлителей сопротивление искусственных заземлителей должно удовлетворять требованию rиск rЗ. Так как проводимость искусственных заземлителей складывается из проводимости вертикальных и горизонтальных заземлителей, то
rиск = rвrг/(rв+rг). (7.12)
Сопротивление одиночного цилиндрического электрода может быть подсчитано по формуле
rо.в
= 0,366
(расч/
)
, (7.13)
где
расч
- расчетное удельное сопротивление
грунта, Омм;
- длина трубы или стержня, м; d
- наружный диаметр трубы или стержня; t
- глубина заложения, равная расстоянию
от поверхности земли до середины трубы
или стержня, м.
Если одиночный заземлитель обычно представляет собой трубу диаметром 0,05 м и длиной 2,5 м, забиваемую на глубину 0,7 м, считая от поверхности земли до верха трубы (t = 0,7 + 1,25=1,95), то
rо.т
0,3расч.
(7.14)
Обычно вместо труб используют более дешевые заземлители из угловой стали. Сопротивление растеканию таких электродов определяется по формуле (7.13) с введением вместо d эквивалентного диаметра заземлителя из угловой стали dy. Эквивалентный диаметр dy угловой стали рассчитывают, исходя из активной поверхности растекания тока, по формуле
dy = 0,95 b, (7.15)
где b - ширина полки уголка.
Если пользоваться упрощенной формулой (7.14), сопротивление одиночного электрода длиной 2,5 м получается равным:
для угловой стали 50 х 50 х 5 мм
rо.y
= 0,318расч;
(7.16)
для угловой стали 60 х 60 х 6 мм
rо.у
= 0,298расч.
(7.17)
Сопротивление растеканию тока протяженных горизонтальных заземлителей определяют по формулам
rо.п
= 0,366 (расч/
)
lg(2
2/bt);
(7.18)
rо.кр
= 0,366 (расч/
)
lg(
2/dt),
(7.19)
где rо.п и rо.кр – соответственно сопоставления полосового и круглого горизонтальных заземлителей, Ом.
Из сопоставления формул (7.18) и (7.19) следует, что одинаковые сопротивления растеканию тока дает круглая сталь диаметром d и полоса шириной 2d.
Обычно устраивают сложные заземлители из нескольких (а иногда из большого количества) вертикальных электродов, которые соединяют параллельно металлической полосой, являющейся также электродом. Электроды такого заземлителя располагаются на расстоянии друг от друга, обычно равном 1-3 длинам электрода, из-за чего возникает так называемое взаимное экранирование электродов. Явление экранирования происходит в результате наложения электрических полей при растекании тока в землю. Сопротивление каждого электрода при этом растет. Экранирование приводит к существенному увеличению их сопротивления.
Таким образом, сопротивление сложного заземлителя (при расположении электродов в ряд или по контуру) следует определять с учетом взаимного экранирования одиночных вертикальных электродов и горизонтальных соединительных полос.
Сопротивление растеканию тока п вертикальных электродов с учетом их экранирующего влияния определяют по формуле
rв= rо.в/nв, (7.20)
где rо.в - сопротивление одиночного вертикального заземлителя (формулы (7.13) – (7.17)); в — коэффициент использования вертикальных заземлителей (см. прил. 3).
Сопротивление растеканию тока горизонтальных соединительных полос, связывающих вертикальные заземлители, с учетом экранирующего влияния полос находят по формуле
rг.п= rо.п/г, (7.21)
где rо.п – сопротивление горизонтальной соединительной полосы без экранирующего влияния на нее (см. формулы (7.18) и (7.20)); г – коэф- фициент использования горизонтальных соединительных полос (см. прил. 3).
Сопротивление всего заземлителя определяют по формуле (7.12). После вычисления сопротивления всего заземлителя можно сделать вывод о его соответствии нормативным требованиям [1].
Вышеперечисленные действия можно представить в виде алгоритма, структура которого представлена на рис. 7.9. Разработана программа, работающая по этому алгоритму. После ввода начальных данных о типах электродов, их размерах, конструкции всего заземлителя, а также сопротивлении грунта производится анализ параметров и делается вывод о соответствии заземлителя нормативным требованиям [1].
Рис. 7.9. Структура алгоритма анализа параметров заземлителя