
- •1. Предмет, разделы, цели и задачи инженерной геологии. Инженерная геология и ее связь с другими науками.
- •2. Краткая история развития инженерной геологии.
- •3. Земля как планета солнечной системы. Происхождение Земли.
- •4. Форма, размеры и физические особенности Земли: Строение Земли.
- •5. Внешние оболочки Земли.
- •6 . Породообразующие минералы. Минералы и их строение.
- •7. Физические свойства минералов. Шкала Мооса.
- •8. Химический состав минералов.
- •9. Характеристика породообразующих минералов.
- •10. Основные сведения о горных породах. Классификация горных пород.
- •11. Инженерно-геологическая характеристика магматических горных пород
- •12. Общие сведения об осадочных породах и их особенности. Образование осадочных пород.
- •14. Осадочные породы механического происхождения.
- •15. Осадочные породы органогенного происхождения
- •16. Структура и текстура обломочных пород
- •17. Метаморфические горные породы и их инженерно – геологическая характеристика
- •18. Карсты
- •19. Инженерно – геологические изыскания. Нормативные документы. Стадии проведения изыскания.
- •20. Цель, задачи и состав инженерно – геологического изыскания.
- •21. Инженерно – геологическая съемка.
- •22. Разведочные работы. Сбор образцов и проб грунта.
- •23. Круговорот воды в природе.
- •24. Образование и классификация подземных вод. Происхождение подземных вод
- •25. Режим подземных вод.
- •26. Геологическая хронология. Абсолютный и относительный возраст горных пород.
- •27. Шкала геологического времени.
- •28. Краткая характеристика инженерно – геологических условий строительства.
- •29. Общие сведения об опасных геологических условий строительства.
- •30. Геологическая деятельность ветра.
- •31. Геологическая деятельность атмосферных осадков.
- •32. Геологическая деятельность рек.
- •33. Геологическая деятельность моря.
- •34. Геологическая деятельность ледников.
- •35. Движение горных пород на склонах рельефа местности.
35. Движение горных пород на склонах рельефа местности.
36. Полевые исследования грунтов и их цели, задачи, методы.
37. Построение стратиграфической колонки буровой скважины.
38. Построение геологических разрезов.
39. Определение абсолютных отметок подошвы слоя.
40. Определение мощности слоя по глубине залегания его подошвы.
41. Определение абсолютных отметок уровней подземных вод
42. Определение мощности слоя по абсолютным отметкам на геологическом разрезе.
43. Инъекционный способ закрепления грунтового основания. Химические реагенты использующиеся при нем.
44. Способы закрепления грунтового основания.
Закрепление грунтов, искусственное преобразование (физико-химическими методами) свойств грунтов для целей строительства в условиях их естественного залегания. В результате З. г. увеличивается несущая способность основания сооружения, повышается его прочность, водонепроницаемость, сопротивление размыву и др. З. г. широко применяется при строительстве промышленных и гражданских зданий на просадочных грунтах, для укрепления откосов выемок дорог и стенок котлованов в водонасыщенных грунтах, в качестве противооползневых мероприятий, при проходке горных выработок, создании противофильтрационных завес в основании гидротехнических сооружений, для защиты бетонных сооружений (фундаментов) от воздействия агрессивных промышленных вод, для увеличения несущей способности свай и опор большого диаметра и т.д. З. г. достигается нагнетанием в грунт вяжущих материалов и химических растворов, а также воздействием на грунт электрическим током, нагреванием и охлаждением.
Основные способы З. г.: цементация, глинизация, битумизация, силикатизация, смолизация, методы электрохимического или термического воздействия, искусственное замораживание.
Цементация заключается в нагнетании в закрепляемый грунт (трещиноватый скальный или песчано-гравелистый) через систему пробуренных в нём скважин цементной суспензии (соотношение массы цемента и воды в растворе в пределах от 0,1 до 2). Для повышения подвижности густых цементных и цементно-песчаных растворов применяют добавки сульфитно-спиртовой барды в количестве 0,01—0,25% по отношению к цементу. Ускорение схватывания растворов и увеличение первоначальной прочности цементного камня регулируется добавками хлористого кальция в количестве 1—5% по отношению к цементу. Прочность и водонепроницаемость грунта после цементации значительно увеличиваются.
В кавернозных скальных породах при большой скорости грунтового потока наряду с цементацией применяется горячая битумизация. Её назначение — заделка наиболее крупных каверн, не поддающихся цементации из-за большой скорости грунтового потока. Нагнетание горячего битума в полости и трещины кавернозных пород производится через пробуренные скважины, оборудованные инъекторами. При холодной битумизации в грунт нагнетают тонкодисперсную битумную эмульсию. Способ применяется для очень тонких трещин в скальных грунтах и закрепления песчаных грунтов.
Глинизация служит для уменьшения фильтрационной способности трещиноватых скальных, кавернозных пород и гравелистых грунтов. При этом способе в трещины породы нагнетается под большим давлением глинистая суспензия с добавкой небольшой дозы коагулянта.
Способ силикатизации основан на использовании силикатных растворов. Для закрепления среднезернистых песков применяется т. н. двухрастворный способ, состоящий в последовательном нагнетании в грунт растворов силиката натрия и хлористого кальция. Получающийся в результате реакции гель кремниевой кислоты придаёт грунту значительную прочность и водонепроницаемость. Мелкие пески закрепляются способом однорастворной силикатизации, т. с. раствором силиката натрия с добавкой фосфорной кислоты (рис. 1). В лёссовых грунтах нагнетается лишь раствор силиката натрия; роль второго раствора выполняют соли самого грунта.
Смолизация — нагнетание водного раствора карбамидной смолы с добавкой соляной кислоты, щавелевой кислоты или хлористого аммония. Применяется для закрепления, повышения прочности и водонепроницаемости мелкозернистых песчаных грунтов.
Для глинистых грунтов, где нагнетание растворов невозможно, используется электрохимический способ закрепления, основанный на пропускании постоянного электрического тока через грунт, в который вводится раствор хлористого кальция, в результате чего грунт обезвоживается и уплотняется. Реакции обмена, происходящие при этом в приэлектродной зоне, также способствуют уплотнению и закреплению грунта. Электрохимическое закрепление подразделяется на электроосушение, электроуплотнение и электрозакрепление.
Для упрочнения просадочных лёссовых грунтов применяется термическое закрепление, осуществляемое обжигом закрепляемых грунтов газообразными продуктами горения топлива, имеющими температуру 700—1000°С. Наиболее эффективным является сжигание топлива непосредственно в толще закрепляемого грунта (рис.2). Стабилизация и закрепление неустойчивых водоносных грунтов достигается искусственным замораживанием грунтов.
В СССР периодически проводятся всесоюзные совещания по закреплению и уплотнению грунтов, материалы которых публикуются в специальных сборниках.