
- •1. Предмет, разделы, цели и задачи инженерной геологии. Инженерная геология и ее связь с другими науками.
- •2. Краткая история развития инженерной геологии.
- •3. Земля как планета солнечной системы. Происхождение Земли.
- •4. Форма, размеры и физические особенности Земли: Строение Земли.
- •5. Внешние оболочки Земли.
- •6 . Породообразующие минералы. Минералы и их строение.
- •7. Физические свойства минералов. Шкала Мооса.
- •8. Химический состав минералов.
- •9. Характеристика породообразующих минералов.
- •10. Основные сведения о горных породах. Классификация горных пород.
- •11. Инженерно-геологическая характеристика магматических горных пород
- •12. Общие сведения об осадочных породах и их особенности. Образование осадочных пород.
- •14. Осадочные породы механического происхождения.
- •15. Осадочные породы органогенного происхождения
- •16. Структура и текстура обломочных пород
- •17. Метаморфические горные породы и их инженерно – геологическая характеристика
- •18. Карсты
- •19. Инженерно – геологические изыскания. Нормативные документы. Стадии проведения изыскания.
- •20. Цель, задачи и состав инженерно – геологического изыскания.
- •21. Инженерно – геологическая съемка.
- •22. Разведочные работы. Сбор образцов и проб грунта.
- •23. Круговорот воды в природе.
- •24. Образование и классификация подземных вод. Происхождение подземных вод
- •25. Режим подземных вод.
- •26. Геологическая хронология. Абсолютный и относительный возраст горных пород.
- •27. Шкала геологического времени.
- •28. Краткая характеристика инженерно – геологических условий строительства.
- •30. Геологическая деятельность ветра.
- •31. Геологическая деятельность атмосферных осадков.
- •32. Геологическая деятельность рек.
- •33. Геологическая деятельность моря.
- •34. Геологическая деятельность ледников.
- •35. Движение горных пород на склонах рельефа местности.
- •36. Полевые исследования грунтов и их цели, задачи, методы.
- •37. Построение стратиграфической колонки буровой скважины.
- •38. Построение геологических разрезов.
- •39. Определение абсолютных отметок подошвы слоя.
- •44. Способы закрепления грунтового основания.
5. Внешние оболочки Земли.
В общем виде, как установлено современными геофизическими исследованиями на основании, в частности, оценок скоростей распространения сейсмических волн, изучения плотности земного вещества, массы Земли, результатов космических экспериментов по определению распределения воздушного и водного пространств и другими данными, Земля сложена как бы несколькими концентрическими оболочками: внешними—атмосфера (газовая оболочка), гидросфера (водная оболочка), биосфера (область распространения живого вещества, по В.И. Вернадскому) и внутренними, которые называют собственно геосферами (ядро, мантия и литосфера) (рис. 1).
Непосредственному наблюдению доступны атмосфера, гидросфера, биосфера и самая верхняя часть земной коры. С помощью буровых скважин человеку удается изучать глубины в основном до 8 км. Проходка сверхглубоких скважин, которая осуществляется в научных целях в нашей стране, США и Канаде (в России на Кольской сверхглубокой скважине достигнута глубина более 12 км, что позволило отобрать образцы горных пород для непосредственного прямого изучения). Основной целью сверхглубокого бурения является достижение глубинных слоев земной коры — границ «гранитного» и «базальтового» слоев или верхних границ мантии. Строение более глубоких недр Земли изучается геофизическими методами, из которых наибольшее значение имеют сейсмические и гравиметрические. Изучение вешества, поднятого с границ мантии, должно внести ясность в проблему строения Земли. Особый интерес представляет собой мантия, так как земная кора со всеми полезными ископаемыми образовалась в конечном счете из ее вещества.
Атмосфера по распределенной в ней температуре снизу вверх подразделяется на тропосферу, стратосферу, мезосферу, термосферу и экзосферу. Тропосфера составляет около 80 % всей массы атмосферы и достигает высоты 16—18 км в экваториальной части и 8—10 км в полярных областях. Стратосфера простирается до высоты 55 км и имеет у верхней границы слой озона. Далее идут до высоты 80 км мезосфера, до 800—1000 км термосфера и выше располагается экзосфера (сфера рассеивания), составляющая не более 0,5 % массы земной атмосферы (см. рис. 1). В состав атмосферы входит азот (75,51 %), кислород (23,3 %), аргон (1,28 %), углекислота (0,04 %) и другие газы и почти весь водяной пар. Содержание озона (03) равно 3,1 х 10IS г, а кислорода (03) 1,192 х х1021 г. С удалением от поверхности Земли температура атмосферы резко понижается и на высоте 10—12 км она уже составляет около —50 "С. В тропосфере происходит образование облаков и сосредотачиваются тепловые движения воздуха. У поверхности Земли наиболее высокая температура была отмечена в Ливии (+ 58 "С в тени), на территории бывшего СССР в районе г. Термез (+ 50 °С в тени).
жизни на Земле в известной нам форме. Из воды, как простого соединения и углекислоты, растения способны под воздействием солнечной энергии и в присутствии хлорофилла образовывать сложные органические соединения, что собственно и является процессом фотосинтеза. Вода на Земле распределена неравномерно, большая ее часть сосредоточена на поверхности. По отношению же к объему земного шара общий объем гидросферы не превышает 0,13 %. Основную часть гидросферы составляет Мировой океан (94 %), площадь которого 261 059 км", а общий объем —1370 млн. км3. В континентальной земной коре 4,42 х 10;) г воды, в океанической —3,61 х 10й г. В табл. 1 приведено распределение воды на Земле.
Наиболее низкая температура зафиксирована в Антарктиде (—87 °С), а на территории России в Якутии (—71 °С).
Стратосфера'—следующий над тропосферой слой. Присутствие озона в данном атмосферном слое обусловливает повышение температуры в нем до + 50 "С, но на высоте 8—90 км температура снова понижается до (—60)—(—90) °С.
Среднее давление воздуха на уровне моря равно 1,0132 бар (760 мм рт- ст.), а плотность 1,3 х 103 г/см. В атмосфере и ее облачном покрове поглощается 18 % излучения Солнца. В результате радиационного баланса система Земля-атмосфера средняя температура на поверхности Земли положительная + 15 °С, хотя ее колебания в разных климатических зонах могут достигать 150 "С.
Гидросфера — водная оболочка, которая играет большую роль в геологических процессах Земли. В ее состав входят все воды Земли (океаны, моря, реки, озера, материковые льды и т. д.). Гидросфера не образует сплошного слоя и покрывает земную поверхность на 70,8 %. Средняя мощность ее около 3,8 км, наибольшая—свыше II км (11 521 м —Марианская впадина в Тихом океане).
Гидросфера Земли значительно моложе самой планеты. На первых этапах своего существования поверхность Земли была полностью безводной, да и в атмосфере водяного пара практически не было. Образование гидросферы обусловлено процессами отделения воды из вещества мантии. Гидросфера в настоящее время составляет неразрывное единство с литосферой, атмосферой и биосферой. Именно для последней — биосферы — весьма важное значение имеют уникальные свойства воды, как химического соединения, например, изменения в объеме при переходе воды из одного фазового состояния в другое (при замерзании, при испарении); высокая растворяющая способность по отношению почти ко всем соединениям на Земле.
Именно наличие воды по своей сути обеспечивает существование
Температура воды в океане меняется не только в зависимости от широты местности (близость к полюсам или экватору), но и от глубины океана. Наибольшей изменчивостью температур отличается поверхностный слой до глубины 150 м. Самая высокая температура воды в верхнем слое отмечена в Персидском заливе (+ 35,6 °С), а наиболее низкая —в Северном Ледовитом океане (—2,8 °С).
Химический состав гидросферы весьма разнообразен: от весьма пресных до очень соленых вод типа рассолов.
Более 98 % всех водных ресурсов Земли составляют соленые воды океанов, морей и некоторых озер, а также минерализованные подземные воды. Обший объем пресной воды на Земле равен 28,25 млн. км\ что составляет всего лишь около 2 % общего объема гидросферы, при этом наибольшая часть пресных вод сосредоточена в материковых льдах Антарктиды, Гренландии, полярных островов и высокогорных областей. Это вода в настоящее время малодоступна для практического использования человеком.
В Мировом океане содержится 1,4 х 103 диоксида углерода (СОг), что почти в 60 раз больше, чем в атмосфере; кислорода в океане растворено 8 х 1013 г или почти в 150 раз меньше, чем в атмосфере. Ежегодно реки сносят в океаны около 2,53 х 10'6 г терригенного материала с суши, из них почти 2,25 х 10'6 г приходится на взвесь, остальное — растворимые и органические вещества.
Соленость (средняя) морской воды равна 3,5 % (35 г/л). В морской воде содержится кроме хлоридов, сульфатов и карбонатов также йод, фтор, фосфор, рубидий, цезий, золото и другие элементы. В воде растворено 0,48 х 10" г солей.
Глубоководные исследования, проведенные в последние годы, позволили установить наличие горизонтальных и вертикальных течений, существование форм жизни во всей толще воды. Органический мир моря разделяется на бентос, планктон и нектон. К бентосу относятся организмы, обитающие на грунте и в грунте морских и континентальных водоемов. Планктон — совокупность организмов, населяющих толщу воды, не способных противостоять переносу течением. Нектон — активно плавающие, например рыбы, и другие морские животные,
В настоящее время серьезным становится вопрос о дефиците пресной воды, что является одной из составляющих развивающегося глобального экологического кризиса. Дело в том, что пресная вода необходима не только для утилитарных нужд человека (питья, приготовления пищи, умывания и т. п.), но и для большинства промышленных процессов, не говоря уже о том, что только пресная вода пригодна для сельскохозяйственного производства—агротехники и животноводства, так как подавляющее большинство растений и животных сосредоточено на суше и для осуществления своей жизнедеятельности они используют исключительно пресную воду. Рост населения Земли (уже сейчас на планете более 6 млрд. чел) и связанное с этим активное развитие промышленности и сельскохозяйственного производства привели к тому, что ежегодно человеком потребляется 3,5 тыс. км3 пресной воды, причем безвозвратные потери составляют 150 км3. Та часть гидросферы, которая пригодна для водоснабжения, составляет 4,2 км3, это всего лишь 0,3 % объема гидросферы. В России достаточно большие запасы пресной воды (около 150 тысяч рек, 200 тысяч озер, множество водохранилищ и прудов, значительные объемы подземных вод), однако распределение этих запасов по территории страны далеко неравномерно.
Гидросфера играет важную роль в проявлении многих геологических процессов, особенно в поверхностной зоне земной коры. С одной стороны, под воздействием гидросферы происходит интенсивное разрушение горных пород и их перемещение, переотложение, с другой — гидросфера выступает как мощный созидательный фактор, являясь по существу бассейном для накопления в ее пределах значительных толщ осадков разного состава.
Биосфера находится в постоянном взаимодействии с литосферой, гидросферой и атмосферой, что существенно сказывается на составе и строении литосферы.
В целом под биосферой в настоящее время понимают область распространения живого вещества (живые организмы известньгх науке форм); это сложноорганизованная оболочка, связанная биохимическими (и геохимическими) циклами миграции вещества, энергии и информации. Академик В.И. Вернадский в понятие биосферы включает все структуры Земли, генетически связанные с живым веществом, прошлой или современной деятельностью живых организмов. Большая часть геологической истории Земли связана с деятельностью живых организмов особенно в поверхностной части земной коры, например, это весьма мощные осадочные толщи органогенных горных пород — известняков, диатомитов и др. Область распространения биосферы ограничивается в атмосфере озоновым слоем (примерно 18—50 км над поверхностью планеты), выше которого известные на Земле формы жизни невозможны без специальных средств зашиты, как это осуществляется при космических полетах за пределы атмосферы и на другие планеты. В недра Земли до последнего времени биосфера распространялась до глубины Марианской впадины 11521 м, однако при бурении Кольской сверхглубокой скважины достигнута глубина более 12 км, а это означает, что на данную глубину осуществлено проникновение живого вещества.
Внутреннее строение Земли по современным представлениям состоит из ядра, мантии и литосферы. Границы между ними достаточно условны, вследствие взаимопроникновения как по площади, так и по глубине (рис. 1).
Земное ядро состоит из внешнего (жидкого) и внутреннего (твердого) ядра. Радиус внутреннего ядра (так называемый слой G) примерно равен 1200—1250 км, переходный слой (F) между внутренним и внешним ядром имеет мощность около 300—400 км, а радиус внешнего ядра равен 3450—3500 км (соответственно глубина 2870—2920 км). Плотность вещества во внешнем ядре с глубиной возрастает с 9,5 до 12,3 г/см3. В центральной части внутреннего ядра плотность вещества достигает почти 14 г/см3. Все это показывает, что масса земного ядра составляет до 32 % всей массы Земли, в то время как объем всего примерно 16 % от объема Земли. Современные специалисты считают, что земное ядро почти на 90 % представляет собой железо с примесью кислорода, серы, углерода и водорода, причем внутреннее ядро имеет железо-никелевый состав, что полностью отвечает составу ряда метеоритов.
Мантия Земли представляет собой силикатную оболочку между ядром и подошвой литосферы. Масса мантии составляет 67,8 % от обшей массы Земли (О.Г. Сорохтин, 1994). Геофизическими исследованиями установлено, что мантия, в свою очередь, может быть подразделена на верхнюю (слой В) (рис. 1 ) (до глубины 400 км), переходный слой Голицына (слой С на глубине от 400 до 1000 км) и нижнюю мантию (слой Д с подошвой на глубине примерно 2900 км). Под океанами в верхней мантии выделяется слой, в котором мантийное вещество находится в частично расплавленном состоянии. Весьма важным элементом в строении мантии является зона, подстилающая подошву литосферы. Физически она представляет собой поверхность перехода сверху вниз от охлажденных жестких пород к частично расплавленному мантийному веществу, находящемуся в пластическом состоянии и составляющему астеносферу.
По современным представлениям мантия имеет ультраосновной состав (пиролита, как смеси 75 % перидотита и 25 % толеитового базальта или лериолита), в связи с чем ее часто называют перидотитовой или -каменной» оболочкой. Содержание радиоактивных элементов в мантии весьма низки. Так в среднем 10"к % U; 10"7 % Th, 10~*% ^К. Мантия в настоящее время оценивается как источник сейсмических и вулканических явлении, горообразовательных процессов, а также зона реализации магматизма.
Земная кора представляет собой верхний слой Земли, который имеет нижнюю границу или подошву по сейсмическим данным по слою Мохоровичича, где отмечено скачкообразное увеличение скоростей распространения упругих (сейсмических) волн до 8,2 км/с.
Для инженера-геолога земная кора является основным объектом исследований, именно на ее поверхности и в ее недрах возводятся инженерные сооружения, т. е. осуществляется строительная деятельность В частности, для решения многих практических задач важным является выяснение процессов формирования поверхности земной коры, истории этого формирования.
В целом поверхность земной коры формируется пол воздействием направленных противоположно друг другу процессов:
эндогенных, включающих в себя тектонические и магматические процессы, которые ведут к вертикальным перемещениям в земной коре — поднятиям и опусканиям, т. е. создают «неровности» рельефа;
экзогенных, вызывающих денудацию (выполаживание, выравнивание) рельефа за счет выветривания, эрозии различных видов и гравитационных сил;
«седиментационных (осадконакопление), как «выполняющих» осадками все созданные при эндогенезе неровности.
В настоящее время выделяются два типа земной коры: «базальтовая)' океаническая и «гранитная» континентальная, is
Океаническая кора достаточно проста по составу и представляет иЧнш некое трехслойное формирование. Верхний слой, мощность |.которого колеблется от 0,5 км в срединной части океана до L5 км у 1 чубоководных дельт рек и материковых склонов, где накапливается практически ьесьтерригеннын материал, в то время как в других зонах пксэна осадочный матерпач представлен карбонатными осадками и (юскарбонатными красными глубоководными глинами. Второй слой сложен подушечными лавами базальтов океанического типа, подстилаемый долеритовыми дайками того же состава; общая мощность этого слоя составляет 1,5—2 км. Третий слой в верхней части разряда представлен слоем габбро, который вблизи от срединных океанических хребтов подстилается серпентинитами; общая мощность третьего слоя лежит в пределах от 4,7 до 5 км.
Средняя плотность океанической коры (без осадков) равна 2,9 г/см1, ее масса —6,4 х 1024 г, объем осадков 323 млн. kmj. Океаническая кора образуется в рифтовых эонах среди нно-о конических хребтов за счет происходящего под ними выделения базальтовых расплавов из асте-посферного слоя Земли и излияния толеитовых базальтов на океанское дно. Установлено, что ежегодно из растеносферы поступает 12 км3 базальтов. Все эти грандиозные гекгоно-магматические процессы сопровождаются повышенной сейсмичностью и не имеют себе равных на континентах.
Континентальная кора резко отличается от океанической по мощности, строению и составу. Ее мощность меняется от 20—25 км под островными дугами и участками с переходным типом коры до Я0 км под молодыми складчатыми поясами Земли, например, под Андами или Альп и йско-Гималайским поясом. Мощность континентальной коры под древними платформами составляет в среднем 40 км. Континентальная кора сложена тремя слоями, верхний из которых осадочный, а два нижних представлены кристаллическими породами. Осадочный слой сложен глинистыми осадками и карбонатами мелководных морских бассейнов и имеет весьма различную мощность от 0 на древних щитах до 15 км в краевых прогибах платформ. Под осадочным слоем залегают докембрийские «гранитные» породы, зачастую преобразованные процессами регионального метаморфизма. Под этим слоем залегает базальтовый. Отличием океанической коры от континентальной является наличие в ней гранитного слоя. Далее океаническая и континентальная кора подстилается породами верхней мантии.