
- •Сборник заданий
- •Задание №1 по теме "строение вещества"
- •Варианты домашнего задания по теме «Строение вещества»
- •1.Задание по теме «строение атома»
- •ЗаданиЯ по теме «ковалентная химическая связь и строение молекулярных частиц»
- •2.1.Опишите строение предложенных в варианте задания молекул и молекулярных ионов по методу валентных связей (мвс):
- •Задания по теме «межмолекулярные взаимодействия и свойства веществ»
- •3.1. Проанализируйте влияние сил межмолекулярного взаимодействия на свойства веществ (решите задачу с указанным номером).
- •Типы межмолекулярного взаимодействия
- •Список рекомендуемой литературы
- •Задание №2 по теме: «термохимия. Направление химических реакций»
- •Примеры решения задач
- •2. Рекомендации для самостоятельной работы студентов и варианты заданий
- •3. Задачи для самостоятельного решения
- •4. Варианты заданий
- •Задание №3 по теме «химическая кинетика и равновесие»
- •Примеры решения задач
- •1.3. Вычисление константы химического равновесия
- •1.4. Вычисление равновесных концентраций
- •1.5. Направление смещения равновесия
- •Задачи для самостоятельного решения
- •Варианты заданий
- •Список рекомендуемой литературы
- •Задание № 4 по теме «Растворы»
- •Примеры решения задач
- •1.1. Процентная концентрация
- •1.3. Моляльная концентрация (моляльность) , мольная доля, титр
- •1.4. Осмотическое давление. Закон вант- гоффа
- •1.5. Давление насыщенного пара растворов. Тонометрический закон рауля
- •1.6. Температуры кипения и замерзания растворов.
- •2. Задачи для самостоятельного решения
- •3. Варианты заданий
- •Список рекомендуемой литературы
- •Задание №5 по теме: "растворы электролитов"
- •Примеры решения задач
- •1.1. Вычисление степени диссоциации слабых электролитов
- •1.3. Произведение растворимости
- •1.5. Обменные реакции в растворах электролитов
- •Варианты заданий
- •Список рекомендуемой литературы
- •Задание №6 по теме «гидролиз солей»
- •Примеры решения задач
- •Варианты заданий
- •Список рекомендуемой литературы
- •Задание № 7 по теме «Окислительно–восстановительные реакции. Электрохимия»
- •Примеры решения задач
- •2. Задания для самостоятельного решения
- •Список рекомендуемой литературы
- •Задание № 8 по теме «Классификация и свойства неорганических веществ»
- •Примеры решения задач
- •Пример 5. С какими из перечисленных веществ вступит в реакцию серная кислота: koh, CuO, Ba(oh)2, Fe2o3, Al2o3, co2, SiO2, h3po4, o2, h2o? Составьте уравнения возможных реакций.
- •Задания для самостоятельного решения
- •Варианты заданий
- •Список рекомендуемой литературы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •3.Варианты заданий
- •Задание № 10 по теме «Дисперсные системы»
- •Пример решения задачи
- •Варианты заданий
- •Список РекомендуемОй литературЫ
- •Сборник заданий для самостоятельной работы студентов по дисциплине «химия
- •450062, Республика Башкортостан, г.Уфа, ул. Космонавтов,1
Типы межмолекулярного взаимодействия
Тип межмоле-кулярного взаи-модействия |
Взаимодейству-ющие частицы |
Зависимость энер-гии взаимодейст-вия частицы от расстояния |
Примеры веществ |
1 |
2 |
3 |
4 |
1.Ион-ионное |
Катион - анион |
Е~Z1Z2/R2 |
Ионные твердые кристаллы, расплавы ионных веществ: NaCl.
|
Продолжение
2.Ион-дипольное |
Ион - полярная молекула |
Е~z μ/R2 |
Растворы ионных веществ в полярных рас-творителях: NaCI в воде; КОН в спирте |
3.Ион-индуцированный диполь |
Ион - неполярная молекула |
Е~z2 α/R4 |
Растворы ионных веществ в неполяр-ных растворителях |
4.Диполь-дипольное (ори-ентационное) |
полярная полярная молекула молекула
|
е~μ1μ2/R6 |
Вещества из поляр-ных молекул: НС1; растворы по-лярных веще-ств в полярных растворителях: аце-тон в воде |
5.Диполь-инду-цированный диполь (ин-дукциионное) |
полярная неполярная молекула молекула |
Е~μ2α/R6 |
Растворы неполяр-ных веществ в поляр-ных растворителях и, наоборот, бензол в воде; вода в СС14 |
6.Дисперсионное (Лондоновское) |
неполярная неполярная молекула молекула |
Е~α1α2/R6 |
Универсальное, про-является во всех мо-лекулярных вещес-твах: углеводороды, спирты НС1, 12… |
Z – заряд иона;
R – расстояние между взаимодействующими частицами;
μ - электрический дипольный момент молекулы;
α - поляризуемость молекулы.
Примеры решения задания 3.1
Пример 1.Дипольный момент молекул НС1 и НСN равен 1,03 и 2,98 D соответственно. Какова относительная роль диполь-дипольного и дисперсионного вкладов в межмолекулярные силы притяжения в молекуле НСN?
Решение: Диполь-дипольное взаимодействие пропорционально отношению μ4/d6, где μ – дипольный момент молекулы, d – расстояние между молекулами. Предположим, что молекулы НС1 и НСN приблизительно одинаковы по размеру и поэтому величина d должна быть приблизительно одинаковой. Поскольку дипольный момент у молекулы НСN примерно в 2,9 раза больше, чем у молекулы НСl, следует ожидать, что диполь-дипольное взаимодействие для НСN окажется приблизительно в (2,9)4, т.е. в 70 раз больше, чем для НСl. В то же время дисперсионное взаимодействие для этих веществ должно быть примерно одинаковым. (Молекула НСl имеет большую массу, но тройная связь С≡N в молекуле НСN обладает большей поляризуемостью, чем простые одинарные связи. Выше было указано, что дисперсионный вклад в межмолекулярное взаимодействие в НС1 приблизительно в пять раз превышает диполь-дипольный вклад. Поскольку мы пришли к выводу, что диполь-дипольный вклад в молекуле НСN должен быть примерно в 70 раз больше, чем в молекуле НС1, следует ожидать, что для НСN диполь-дипольный вклад окажется в 10-15 раз больше вклада дисперсионных сил в полную энергию межмолекулярного притяжения.
Пример 2. Какое из следующих веществ – P4O10, Cl2, AgCl, I2 - вероятнее всего находится в газообразном состоянии при комнатной температуре и нормальном атмосферном давлении?
Решение: Поставленный вопрос cводится к тому, какое из перечисленных веществ характеризуется наименьшими межмолекулярными силами притяжения. Чем слабее эти силы, тем вероятнее, что вещество находится в газообразном состоянии при заданных температуре и давлении. Эти соображения заставляют выбрать среди перечисленных веществ С12. Данная молекула неполярна и имеет наименьшую молекулярную массу. Действительно, при комнатной температуре и нормальном атмосферном давлении С12 представляет собой газ, тогда как остальные вещества при тех же условиях находятся в твердом состоянии. И наименее вероятно, что при заданных условиях в газообразном состоянии находится AgCl. Это вещество состоит из ионов Ag+ и С1-, между которыми действуют очень большие ионные силы, связывающие ионы в твердое вещество.
Пример 3. Расположите перечисленные ниже водородные связи в порядке возрастания прочности: О—Н…Сl, О—Н…N, N-Н…О, F—Н …О.
Решение: Самой слабой из приведенных водородных связей должна быть первая, О—Н…Сl, поскольку атом хлора, элемента третьего периода, имеет большие размеры и должен быть плохим донором электронной пары, необходимой для образования водородной связи. Водородные связи О—Н…N; F—Н…О должны иметь приблизительно одинаковую прочность, потому что больший диполь связи F—Н компенсируется лучшей донорной способностью азота по сравнению с кислородом. Обе эти связи должны быть прочнее водородной связи N—Н…О, так как диполь связи N—Н имеет небольшую величину. Исходя из сказанного, можно допустить такую последовательность возрастания прочности водородных связей:
О—Н…С1 < N—Н…О < О—Н…N ≈ F—Н…О
Пример 4. Расположите в порядке возрастания температур кипения следующие вещества: ВаС12, Н2, СО. НF и Nе.
Решение: Температура кипения жидкости определяется действующими в ней силами межмолекулярного притяжения. Эти силы в ионных соединениях имеют большую величину, чем в молекулярных жидкостях, поэтому самая высокая температура кипения среди названных веществ должна быть у ВaС12. Межмолекулярные силы в остальных веществах зависят от их молекулярной массы, полярности молекул и от наличия водородных связей. Молекулярные массы этих веществ равны 2 у Н2; 28 у СО; 20 у НF; 4 у Не. Температура кипения Н2 должна быть самой низкой, поскольку молекула водорода неполярна и имеет самую низкую молекулярную массу. Молекулярные массы СО, НF и Ne приблизительно одинаковы. В НF имеются водородные связи, поэтому среди данных веществ он должен кипеть при самой высокой температуре. Следом за ним должен идти СО, молекулы которого характеризуются небольшой полярностью и самой большой молекулярной массой. Последним из этих трех веществ должен располагаться Ne, у которого неполярная одноатомная структурная частица. Таким образом, температура кипения пяти названных веществ должна увеличиваться в ряду
H2 < Ne < CO < HF < BaCl2
Температуры кипения этих веществ имеют следующие значения по шкале Кельвина:
20 (H2), 27 (Ne), 83 (СО), 293 (НF) и 1813 (BaCl2).
Пример 5. С учетом каких факторов можно объяснить закономерности в изменении температур плавления а) простых веществ в ряду галогенов; б) в ряду простых веществ, образуемых элементами II периода?
Решение: а) Все галогены в твердом состоянии имеют решетку молекулярного типа. Различная температура плавления их обусловлена различием в энергии вандерваальсова взаимодействия.
б) Простые вещества элементов II периода различаются типом решетки. Металлическая - у лития и бериллия, атомная (ковалентная каркасная) - у бора и углерода, молекулярная - у азота, кислорода, фтора и атомная - у неона. Вещества с молекулярной решеткой имеют низкие температуры плавления. Самые высокие температуры плавления у веществ с решеткой атомного типа.
Пример 6. Чем объяснить, что температура плавления воды значительно выше температуры плавления фтороводорода (—83° С), хотя дипольный момент молекулы H2O (1,84D) меньше, чем молекулы НF (1,91D)?
Решение: Между молекулами воды возникают три типа межмолекулярных взаимодействий: дисперсионное, диполь-дипольное и водородная связь. Молекулы воды, способные образовывать по 4 водородные связи, дают упорядоченную трехмерную сетку. Между молекулами фтороводорода также возникают три типа межмолекулярных взаимодействий: дисперсионное, диполь-дипольное и водородная связь. Молекулы фтороводорода, способны образовать только по 2 водородные связи. Поэтому суммарная энергия межмолекулярного взаимодействия в воде больше, чем во фтороводороде, и как следствие температура плавления воды выше, чем фтороводорода.
Пример 7. Можно ли, исходя из величин температур плавления ряда веществ, оценить, в каких случаях вещества имеют молекулярную решетку? Рассмотреть на примере:
Ne CH4 HI H2O P4 PdCl2 SiO2 Si NaCl
Т. пл, К 24 89 222,3 273 317 1200 2000 1700 1073
Решение: Обычно низкоплавкие вещества (Ne, CH4, HI, H2O, P4) имеют преимущественно молекулярную решетку, в которой молекулы удерживаются слабыми вандерваальсовыми силами. Ионные (PdCl2, NaCl) и атомные ковалентные каркасные кристаллы (SiO2, Si) плавятся при более высокой температуре, так как частицы в этих кристаллах связаны прочными ионными или ковалентными связями.
Задание 3.2. Для указанных веществ определите:
а) тип химической связи между атомами;
б) структурные частицы вещества;
в) тип кристалла;
г) взаимодействия между структурными частицами вещества;
д) сравните физические свойства веществ:
- высокие или низкие температуры кипения и плавления;
- агрегатное состояние при нормальных условиях;
- электропроводимость;
- растворимость в воде и органических растворителях;
- механические свойства (твердое или мягкое, хрупкое или пластичное…);
е) подтвердите ваши предположения справочными данными о свойствах указанных веществ.
Методические указания к выполнению задания 3.2
Физические и химические свойства вещества определяются доминирующим типом химической связи, которая реализуется в веществе; составом структурных частиц (атомы, ионы, молекулы); видом межмолекулярных взаимодействий между ними; а также их пространственным расположением в образующейся структуре. Классификация веществ по типу химической связи и краткое описание их наиболее характерных физических свойств приведены в таблице 10.
Пример решения задания 3.2
Сравнить физические свойства следующих веществ:
а) CS2; б) Na2SO4; в) Cu; г) SiC.
Решение:
1. Атомы углерода и серы являются неметаллами, между ними образуется ковалентная полярная связь. Структурными частицами
сероуглерода (CS2) являются неполярные молекулы: S=C=S. Образующийся при определенных условиях кристалл сероуглерода относится к молекулярному типу.
Таблица 10
Классификация кристаллов по типу химической связи и
физическим свойствам веществ
Тип кристалла |
Структурные частицы |
Взаимодействие между структур-ными частицами |
Свойства |
Примеры | |
1 |
2 |
3 |
4 |
5 | |
Атомный |
Атомы |
Лондоновские силы персионные |
Мягкость, низкая температура плав-ления, плохие тепло- и электропровод-ность |
Благородные газы-Не, Аг, Кг, Хе, Rn | |
Молекуляр-ный |
Полярные или неполярные мо- лекулы |
Вандервальсовы силы (диспер- сионные, ди- поль-дипольные водородные связи) |
Умеренная мягкость, температура плавле- ния от низкой до уме- ренно высокой, пло-хие тепло- и электро-проводность |
Метан СН4, сахар С12Н22О11, С02,Н20,... | |
Ионный |
Положительно и отрицательно заряженные ио- ны |
Ионная химическая связь |
Твердость и хруп- кость, высокая темпе- ратура плавления, плохие тепло- и электропроводность в тв. состоянии, в жид-ком -электролиты. |
Типичные соли, напри- мер NaCl, Ca(N03)2 | |
Атомный ковалент-ный (кар-касный) |
Атомы неме- таллов, связан- ные в каркас ковалентными связями. |
Ковалентная связь |
Высокая твердость, очень высокая темпе ратура плавления, плохие тепло- и электропроводность |
Алмаз С, кварц Si02 | |
Металли-ческий |
Атомы метал- лов |
Металлическая связь |
Степень твердости са- мая различная, темпе-ратура плавления от низкой до очень высо-кой, высокие тепло- и электропро-водность, ковкость и пластичность |
Все метал- лические элементы, например Сu, Fe, Al, W |
Между неполярными молекулами CS2 … CS2 возникают только дисперсионные взаимодействия, характеризующиеся незначительной энергией. Поэтому следует ожидать, что сероуглерод имеет относительно невысокие температуры кипения (46оС) и плавления (-109оС). При стандартных условиях это летучая жидкость, сероуглерод неэлектропроводен, не растворяется в воде, но хорошо растворяется и растворяет малополярные (жиры) и неполярные вещества (фосфор, серу, йод).
2. Сера и кислород являются неметаллами, между ними возникает ковалентная полярная связь. Они образуют молекулярный анион SO42-. Натрий является металлом и с неметаллами образует ионную связь. Сульфат натрия, таким образом, состоит из ионов Na+ и SO42- и образует ионный кристалл. Между структурными частицами сульфата натрия – ионами Na+ и SO42- - возникает прочная ионная химическая связь. Поэтому сульфат натрия должен характеризоваться высокими температурами плавления (884оС) и кипения (1430оС). При стандартных условиях это твердое, хрупкое, солеобразное кристаллическое вещество. Сульфат натрия не проводит электрический ток в твердом состоянии, в жидком – в расплаве или в растворе – является электролитом. Сульфат натрия, как ионное соединение, хорошо растворим в воде, но не растворим в органических растворителях.
3. Медь является металлом и между атомами меди возникает металлическая химическая связь, образуется металлический кристалл. Особые свойства металлической связи определяют особые свойства металлов. Медь, как и все металлы, обладает характерным блеском, высокой тепло- и электропроводностью, пластичностью, ковкостью. Она нерастворима ни в каких растворителях за счет физического процесса. При стандартных условиях медь – твердое вещество с довольно высокой температурой плавления (1083оС) и кипения.
4. Монокарбид кремния – SiC – состоит из атомов неметалла, между которыми возникает прочная малополярная химическая связь. И кремний, и углерод характеризуются высокой валентностью, каждый из атомов может образовать по четыре связи. Поэтому в монокарбиде кремния реализуется ковалентная каркасная структура, построенная из структурных частиц - атомов неметаллов Si и C, связанных прочной ковалентной химической связью. Для монокарбида кремния следует ожидать очень высокой температуры плавления (≥2600оС) и кипения. Монокарбид кремния характеризуется высокой твердостью, является диэлектриком, нерастворимым ни в каких растворителях.