
- •Уфимский государственный нефтяной
- • Кнеллер л.Е., Салимов в.Г., Ахметов р.Т., 2004
- •1.Характеристика предмета и методов исследования
- •1.1. Содержание и краткий обзор развития
- •1.2. Характеристика объекта и методов исследования
- •1.3. Схема преобразования информации при изучении
- •2. Электрические методы исследования скважин
- •2.1. Методы сопротивлений
- •2.1.1. Удельное электрическое сопротивление водных
- •2.1.1.1. Удельное сопротивление неглинистых пород
- •2.1.1.2. Удельное сопротивление глинистых пород
- •2.1.1.3. Удельное сопротивление пород с трещинной
- •2.1.2. Принципы измерения уэс в скважине
- •2.1.3. Типы зондов кс
- •2.1.4. Диаграммы кс для одиночного пласта
- •2.1.5. Экранирование
- •2.1.6. Стандартный зонд
- •2.1.7. Боковое каротажное зондирование (бкз)
- •2.1.8. Физические основы методов сопротивления заземления (сз)
- •2.1.9. Боковые каротажные зонды
- •2.1.10. Кривые кажущегося сопротивления
- •2.1.11. Исследования микроустановками
- •2.1.11.1.Микрозонды
- •2.1.11.2.Резистивиметры
- •2.1.12. Физические основы индукционного каротажа
- •2.1.13. Характеристика зондов
- •2.1.14. Форма кривых кажущейся проводимости
- •2.1.15. Диэлектрический каротаж
- •2.1.16. Ядерно-магнитный метод
- •2.2. Метод естественных потенциалов
- •2.2.1. Естественные потенциалы горных пород
- •2.2.2. Статическая и наблюдаемая амплитуда сп
- •2.2.3. Форма кривых сп и их интерпретация
- •2.3. Принципиальные схемы электрического каротажа
- •3. Радиоактивные методы
- •Методы радиометрии
- •3.1. Физические основы гамма-каротажа
- •3.2. Индикаторы -излучения
- •3.3. Гамма-гамма каротаж
- •3.4.Интерпретация диаграмм ггк-п
- •3.5. Физические основы нейтронных методов
- •3.6. Разновидности нейтронных методов
- •3.7. Форма кривой рк
- •3.8. Импульсные нейтронные методы
- •3.9. Другие методы радиометрии
- •3.9.1. Метод наведенной активности
- •3.9.2. Метод радиоактивных изотопов
- •4. Другие виды исследования скважин
- •4.1. Акустические методы исследования скважин
- •4.1.1 Физические основы акустического метода
- •4.1.2. Принцип измерения
- •4.1.3. Форма кривых акустического каротажа
- •4.1.4. Литологическое расчленение разрезов
- •4.1.5. Определение пористости
- •4.2. Акустический телевизор
- •4.3. Акустический профилемер
- •4.4. Термометрические методы
- •4.5. Газометрия скважин
- •4.6. Основы интерпретации диаграмм газового каротажа
- •4.7. Каротаж в процессе бурения с каналом связи "забой-устье"
- •4.8. Каротаж в процессе бурения с помощью автономных скважинных приборов
- •5. Интерпретация и применение данных промысловой геофизики
- •5.1. Комплексная геологическая интерпретация данных каротажа
- •5.1.1. Понятие об оперативной и сводной интерпретации
- •5.1.2. Литологическое расчленение разреза скважины
- •5.1.3. Выделение коллекторов
- •5.1.4. Определение пористости
- •5.1.5. Определение глинистости
- •5.1.6. Определение коэффициента нефтегазонасыщения
- •5.1.7. Установление водо-нефтяного и газо-жидкостного контактов
- •5.2. Изучение технического состояния скважин
- •5.2.1. Кавернометрия
- •5.2.2. Профилеметрия
- •5.2.3. Инклинометрия скважин
- •5.2.4. Контроль состояния колонны и качества перфорации
- •5.2.5. Определение интервалов прихвата инструмента
- •5.2.6. Контроль качества цементирования колонны термометром, радиоактивным и акустическим методами
- •5.2.6.1. Метод термометрии
- •5.2.6.2. Метод радиоактивных изотопов
- •5.2.6.3. Гамма-гамма метод
- •5.2.6.4. Акустический метод
- •5.2.7. Определение интервалов затрубной циркуляции флюидов
- •5.3. Контроль за разработкой нефтяных и газовых месторождений
- •5.3.1. Методы контроля за продвижением внк и гжк
- •5.3.2. Выделение отдающих интервалов и определение профиля притока
- •5.3.3. Исследование состава жидкости в колонне
- •6. Прострелочно-взрывные работы и опробование пластов
- •6.1. Отбор образцов пород боковыми грунтоносами
- •6.2. Опробование пластов приборами на каротажном кабеле
- •6.3. Испытание пластов аппаратами на бурильных трубах
- •6.4. Вскрытие пластов
- •7. Геофизическая аппаратура и оборудование
- •7.1. Лаборатория
- •7.2. Подъемники
- •7.3. Каротажные станции
- •7.4. Кабели
- •8. Организация промыслово-геофизической службы и проведение работ
- •8.1. Структура промыслово-геофизической службы
- •8.2. Проведение работ
- •8.3. Подготовка скважин для проведения исследований
- •8.4. Комплексы измерений
- •8.5. Показатели эффективности работ
- •8.6. Требования к точности диаграмм
- •Список рекомендуемой литературы
- •Кнеллер Леонид Ефимович
2.1.13. Характеристика зондов
Многокатушечный зонд представляет собой систему катушек, укрепленных на одном изоляционном стержне. Генераторная Г и приемная П катушки являются главными, остальные катушки называются компенсационными К и фокусирующими Ф. Компенсационные катушки служат для исключения в приемной катушке ЭДС прямого поля, индуцируемого генераторной катушкой. В зависимости от того, расположены ли фокусирующие катушки внутри или вне главного зонда, фокусировка считается внутренней или внешней. Основной задачей внешней фокусировки является снижение влияния вмещающих пород на показания зонда, а задачей внутренней фокусировки - снижение влияния скважины и зоны проникновения. Многие зонды ИК имеют одновременно внешнюю и внутреннюю фокусировки. Фокусирующее действие катушек достигается путем подбора числа витков и расположения относительно главных катушек. Компенсационные и фокусирующие катушки включаются последовательно с главными, но их витки намотаны противоположно виткам генераторной и приемной катушек.
Для зонда с фокусирующими катушками сигнал равен алгебраической сумме сигналов всех возможных пар измерительных и генераторных катушек зонда. Соответственно с этим усложняется и выражение геометрического фактора для отдельных областей среды.
В общем случае
неоднородной среды, состоящей из
отдельных областей А, В, ..., N с удельными
электропроводностями,
где
-
геометрические факторы отдельных
областей, на которые разбито пространство,
получаемые суммированием геометрических
факторов элементарных колец, из которых
состоит каждая область.
Зависимость геометрического фактора G бесконечного по длине цилиндра от его радиуса r называют радиальной характеристикой индукционного каротажного зонда. Зависимость геометрического фактора от мощности пласта h называют вертикальной характеристикой индукционного каротажного зонда.
Рис.2.30. Характеристики зондов индукционного каротажа без учета скин-эффекта:
а - радиальные характеристики; 1 - двухкатушечный зонд, 2 - 6Ф1, 3 - 6ФФ40 и 6Э1,
4 - 4Ф1, 5 - 8И1,4 , 6 - 4И1 , б - вертикальные характеристики: 1 - 6Ф1, 2 - 6ФФ40,
3 - двухкатушечный зонд с L=1 м
В обозначениях зондов первая цифра
ПК
соответствует числу всех катушек, буква +140
означает, что зонд фокусирующий, по- 0.48
следняя
цифра отражает длину зонда.
ФГ-7
Например: 5Ф1.2- пятикатушечный, фо-
кусирующий,
длиной 1.2м. Индукцион- ФП-7
ные
зонды сравнительно небольших раз-
1,20.14
меров
( 0.75-1.2м ) обладают значитель-
К-2
ным
радиусом исследования, превышаю-
щих
примерно в 4 раза радиус исследова-0.48
ния
обычных градиент-зондов КС такой
ГК+140
же
длины.
Рис.2.31. Схема индукционного зонда 5Ф1.2:
ГК - генераторная, ПК – измерительная,
ФП – фокусирующая измерительная,
ФГ - фокусирующая генераторная,
К - компенсационная катушки