
- •Лекции по курсу «производство вмс на предприятиях нефтехимии»
- •Общие понятия
- •Общие сведения о полимерах и их номенклатура
- •Методы получения синтетических полимеров
- •Молекулярные характеристики полимеров
- •Физическая структура и состояния полимеров
- •Получение полимеров
- •Полимеризация
- •Радикальная полимеризация
- •Сополимеризация
- •Технические способы проведения гомо- и сополимеризации
- •Поликонденсация
- •Влияние различных факторов на скорость поликонденсации и молекулярную массу
- •Совместная поликонденсация
- •Технические способы проведения поликонденсации
- •Модификация полимеров Общие понятия и методы модификации полимеров
- •Физическое воздействие → химическая реакция → изменение физической структуры
- •Модификация полимеров низкомолекулярными веществами (на примере производных целлюлозы)
- •Модификация олигомеров олигомерами
- •Модификация ненасыщенных полиэфирных смол полимеризующимся мономером
- •Комбинированная химическая модификация полимеров (на примере получения материалов медицинского назначения)
- •Старение и стабилизация полимеров Процессы старения полимеров
- •Природа активных центров в процессах старения и их физико-химические особенности
- •Термическое старение в отсутствие кислорода
- •Термоокислительное старение
- •Термоокислительная деструкция некоторых полимеров
- •Старение под действием света
- •Другие виды старения
- •Защита полимеров от старения
- •Защита полимеров от термического и термоокислительного старения
- •Защита полимеров от светового старения
- •Защита полимеров от ионизирующих излучений
- •Методы введения стабилизаторов
- •Технология производства полиолефинов
- •Производство полиэтилена низкой плотности
- •Производство полиэтилена высокой плотности
- •Другие способы производства полиэтилена
- •Производство полипропилена
- •Завершающая обработка полиолефинов
- •Сведения по технике безопасности при производстве полиолефинов
- •Свойства и применение полиэтилена
- •Получение, свойства и применение сополимеров этилена
- •Модифицирование полиэтилена
- •Свойства и применение полипропилена
- •Свойства и применение других полиолефинов
- •Технология производства полистирольных пластиков
- •Производство полистирола и сополимеров стирола в суспензии
- •Производство полистирола для вспенивания блочно-суспензионным методом
- •Производство ударопрочного полистирола блочно-суспензионным методом
- •Производство полистирола в эмульсии
- •Производство абс-сополимеров в эмульсии
- •Производство пенополистирола
- •Свойства и применение полистирольных пластиков Полистирол и ударопрочный полистирол
- •Сополимеры стирола
- •Пенополистирол
- •Абс-сополимеры
- •Технология производства полимеров на основе хлорированных непредельных углеводородов
- •Производство других эпоксидных смол и их применение
Молекулярные характеристики полимеров
Любой полимер в той или иной степени неоднороден по молекулярной массе, то есть полидисперсен. Полидисперсность полимеров связана с особенностями их получения, которые подчиняются статистическим законам. В связи с полидисперсностыо полимеры характеризуются значениями средних молекулярных масс. В зависимости от параметра усреднения различают средиечисленную Мп и среднемассовую Мw молекулярную массу. Для одного и того же полимера Мw. и Мп иногда отличаются в несколько раз.
Среднечисленную молекулярную массу Мп полимера получают, если усреднение производят по численной доле макромолекул определенной молекулярной массы, то есть каждой фракции полимера. Так, если в полимере содержится N макромолекул, из которых пх с молекулярной массой Mv п2 с молекулярной массой М2 и т. д., то численная доля каждой фракции будет Nj = n{/N, то есть Nx = nx/N, N2 = n2/N u т. д., а среднечисленная молекулярная масса составит
Среднемассовую молекулярную массу Mw полимера получают, если усреднение производят по массовой доле макромолекул определенной молекулярной массы. Так, если массовые доли макромолекул равны ω1, ω2, ω3, и т. д., где ω1, = niMi/N, а их молекулярные массы соответственно M1, M2, М3 и т. д., то
Как видно Мω > Мп. Чем более полимолекулярен полимер, то есть чем больше отличаются друг от друга молекулярные массы различных фракций полимера, тем больше различаются и значения средних молекулярных масс Мω и Мп. Так, если полимер состоит из двух фракций, каждая из которых содержит одинаковое число макромолекул, молекулярные массы которых равны 1000 и 100 000, рассчитанные значения Мω и Мп такого полимера составляют 50 000 и 1980, то есть отличаются друг от друга более чем в 25 раз. Отношение Мω / Мп в первом приближении может быть использовано в качестве меры полидисперсности полимера. Для синтетических полимеров обычно Мω / Мп = 2,0, но может достигать и 20-50; для предельно узкой мономолекулярной фракции Мω / Мп ≈ 1.
Наиболее полное представление о молекулярном составе полимера дает кривая распределения по молекулярным массам. Молекулярно-массовое распределение (ММР) полимера представляет собой зависимость содержания в нем численной Ni или массовой ωi доли макромолекул с данным значением молекулярной массы от молекулярной массы.
По виду кривой ММР судят о механизме реакций получения полимера. Один узкий пик соответствует однородному по молекулярной массе образцу, для которого Мω / Мп ≈ 1; один широкий пик может свидетельствовать о большой полидисперсности полимера; существование нескольких пиков на кривой ММР не только говорит о значительной полидисперсности полимера, но и указывает, что при его получении могли происходить различные побочные реакции (передача цепи на полимер и др.).
Молекулярную массу полимеров определяют, изучая различные свойства их разбавленных растворов. Такими свойствами являются температуры замерзания и кипения, седиментация, осмотическое давление, рассеяние света — мутность и другие, которые отличаются от указанных свойств чистых растворителей и заметно изменяются с изменением концентрации раствора полимера. Среднечисленную молекулярную массу Мn находят методами криоскопии, эбуллиоскопии и осмометрии, а среднемассовую молекулярную массу Мω — светорассеянием.
Широкое
применение благодаря простоте нашел
вискозиметрический метод
оценки
средиевязкостной молекулярной массы
Мη.
Он
состоит в определении
характеристической вязкости
[η]
раствора полимера. Между нею и молекулярной
массой полимера существует эмпирическое
соотношение, известное под названием
уравнения Марка-Куна-Хувинка:
где
Кη и α — постоянные, характерные для
каждой пары полимер-растворитель. Для
всех синтетических полимеров справедливо
соотношение