
Охрана труда
.pdf
происходит также восстановление шестивалентного хрома до двухвалентного. Последний, так же как ионы железа, реагирует с гидрооксильной группой ОН с образованием нерастворимых гидроокисей хрома и железа [Сг(ОН)3 Fe(OH)2], которые затем удаляются как взвеси, например отстаиванием.
Электродиализный метод очистки используют для удаления из малоконцентрированных сточных минеральных солей (в том числе солей тяжелых металлов), а также при переработке высококонцентрированных сточных вод (отработанных технологических растворов) с целью выделения из них ценных продуктов для последующего использования. Электродиализом называют процесс переноса ионов через мембрану под действием приложенного к ней электрического поля. Для очистки сточных вод используют электрохимически активные ионитовые мембраны. Наиболее распространены гетерогенные ионитовые мембраны, представляющие собой тонкие пленки, изготовленные из размельченной в порошок ионообменной смолы. В зависимости от того, из какой смолы сделана мембрана, различают катионитовые и анионитовые мембраны. Первые способны пропускать через себя лишь катионы, а вторые — анионы вредных примесей.
Суть процесса электродиализа ясна из представленной на рис. 3.92 схемы элекродиализного опреснения воды.
Рисунок 3.92 Схема процесса электродиализа: I — катод; II — анод; 1 — присоединение к отрицательному полюсу выпрямителя; 2 — выход газообразного водорода; 3—6 — подача воды соответственно на промывку катодной камеры, в опреснительные камеры на промывку анодной камеры; 7 — выход газообразных кислорода и хлора; 8 — присоединение к положительному полюсу выпрямителя; 9 — отвод опресненной воды; 10 — отвод концентрированного рассола
Процесс осуществляется в многокамерных аппаратах, в которых плоские мембраны расположены параллельно. Обессоливаемая вода поступает в четные камеры, а через нечетные циркулирует рассол. Под действием электрического поля катионы двигаются к катоду (отрицательному электроду I), а анионы — к аноду II. Из нечетных камер ни анионы, ни катионы в соседние камеры не проникают, т. к. на пути их движения расположены препятствия в виде непроницаемых
для катионов анионитовых мембран со стороны катода и непроницаемых для анионов катионитовых мембран со стороны анода. В результате соли переносятся током из четных камер в нечетные, вода в четных камерах опресняется, а в нечетных рассольных камерах концентрируются отделяемые соли. В настоящее время распространены электродиализные установки типа ЭДУ, имеющие от 100 до 300 камер.
Биологическая очистка сточных вод основана на способности микроорганизмов использовать растворенные и коллоидные органические соединения в качестве источника питания в процессах своей жизнедеятельности. При этом органические соединения окисляются до воды и углекислого газа. Биологическим путем очищаются многие виды органических соединений городских и производственных сточных вод. Бактерии находятся в активном иле, представляющем собой темно-коричневую или черную жидкую массу, обладающую землистым запахом. С биологической точки зрения активный ил — это скопление аэробных бактерий в виде зоогелей. Кроме микробов в иле могут присутствовать простейшие (в аэротенках), в биопленке (биофильтры) — черви, личинки насекомых, водные клещи. При очистке многих видов сточных вод используют бактерии рода Pseudomonas — грамотрицательные палочки.
Биологическую очистку ведут или в естественных условиях (поля орошения, поля фильтрации, биологические пруды) или в специальных сооружениях: аэротенках, биофильтрах. Аэротенки представляют собой открытые резервуары с системой коридоров, через которые медленно протекают сточные воды, смешанные с активным илом. Эффект биологической очистки обеспечивается постоянным перемешиванием сточных вод с активным илом и непрерывной подачей воздуха через систему аэрации аэротенка. Активный ил затем отделяется от воды в отстойниках и вновь направляется в аэротенк. Биологический фильтр — это очистное сооружение, заполненное загрузочным материалом, через который фильтруется сточная вода и на поверхности которого развивается биологическая пленка, состоящая из закрепленных на загрузочном материале различных форм микроорганизмов.
Крупные промышленные предприятия имеют различные производства (механообрабатывающее, гальваническое, литейное, окрасочное, кузнечное и т. д.), которые дают различный состав загрязнения сточных вод. Поэтому водоочистные сооружения таких предприятий выполнены следующим образом. Отдельные производства имеют свои локальные очистные сооружения, аппаратурное обеспечение которых учитывает специфику загрязнения и полностью или частично удаляет их, затем все локальные стоки направляются в емкости-усреднители, а из них в централизованную систему, где производится дальнейшая очистка стоков до достижения концентрации вредных веществ уровня предельно допустимых значений, установленных для предприятия. Возможны и иные варианты системы водоочистки в зависимости от конкретных условий на предприятии.
Как видно, методов и средств аппаратного обеспечения очистки сточных вод много и они разнообразны, причем очистка от одного и того же загрязнения может быть обеспечена различными методами, выбор которого зависит от опыта
разработчика, эксплуатационных, финансовых и других требований и возможностей.
2.2.2 Обеспечение качества питьевой воды
Трудовой коллектив предприятия, организации должен быть обеспечен качественной питьевой водой. Требования к качеству питьевой воды определяются СанПиН 2.1.4.1074—01. Качество питьевой воды зависит от источника водоснабжения — городской водопровод, открытый водоем, артезианская скважина. Качество водопроводной воды может быть неудовлетворительным по причине плохой водоподготовки, изношенности водопроводных труб. Подземные воды из артезианских скважин могут также не удовлетворять требованиям к питьевой воде, например содержать много железа и т. д.
Если предприятие удалено от населенных мест, люди трудятся в автономных условиях (геологи, строители, вахтовики на нефте- и газопромыслах и т. д.) может использоваться либо привозная вода, либо вода из открытых водоемов — рек, озер. Вода открытых водоемов может не соответствовать, что чаще всего бывает, требованиям к качеству питьевой воды.
Во всех случаях несоответствия качества питьевой воды нормативам она должна дополнительно очищаться и подготавливаться до требований СанПиН
2.1.4.1074—01.
Конструкция и тип установок или устройств для подготовки питьевой воды определяется составом загрязнений и объемом используемой воды.
Водоподготовка для снабжения питьевой водой отдельных зданий, рабочих поселков, предприятий может осуществляться в универсальных модульных компактных системах, серийно выпускаемых промышленностью и позволяющих получать питьевую воду высокого качества из подземных и открытых водоемов. Установки для подготовки питьевой воды используют методы, аналогичные применяемым при очистке сточных вод. Например, в модульных фильтровальных установках серии УПВ очистка питьевой воды осуществляется следующим образом: исходная вода обеззараживается и последовательно проходит пять ступеней очистки — аэрацию, реагентную обработку, осветление, фильтрование и окончательную доочистку на активных углях. Такая комплексная очистка исходной воды гарантирует высокую степень очистки от всех видов загрязнений — взвесей, микроорганизмов, химических веществ (аммиака, марганца, железа, солей тяжелых металлов, фенолов, хлорорганических и канцерогенных соединений). Установки обеспечивают производительность от 5 до 100 м3/ч. В зависимости от состава исходной воды часть ступеней очистки может быть исключена.
Для получения питьевой воды при заборе из подземных и открытых водоемов, подвергшихся химическому загрязнению и бактериальному заражению, может применяться комплекс «Каскад», состоящий из модулей обеззараживания, химической обработки, фильтрования и адсорбции. Такой комплекс автономен, имеет свою электросиловую установку и очень удобен для
снабжения водой питьевого качества крупных автономных предприятий, строек, поселков и т. д.
Для обессоливания воды применяются опреснительные электродиализные установки (см. 2.2.1). Для обеззараживания воды все шире находят применение установки ультрафиолетового обеззараживания, в которых под действием жесткого бактерицидного ультрафиолетового излучения уничтожаются опасные и болезнетворные бактерии и микроорганизмы.
Для обеспечения питьевой водой небольших трудовых коллективов и коллективов, работающих в автономных условиях, могут применяться небольшие компактные устройства очистки типа фильтров «Турист-2М» (очищает воду от механических загрязнений, соединений железа, фенола, ядохимикатов, гуминовых кислот), «Мечта», «Коттедж» (удаляют те же вещества, что и «Турист-2М», и дополнительно устраняют неприятный привкус и запах), «Аква14» (очищает от ржавчины, окалины, песка и т. д.), «Водолей» (улучшает качество питьевой воды, очищая от хлорорганических соединений, фенолов, остаточного хлора, тяжелых металлов, бактериальных и вирусных загрязнений, устраняя неприятные запахи, привкусы, мутность и цветность), «Родник» (в зависимости от количества модулей — от 2 до 5 — может очищать от ионов тяжелых металлов, диоксинов, радионуклидов и других опасных для здоровья веществ).
2.3 Средства индивидуальной защиты человека от химических и биологических негативных факторов
В системе мероприятий по охране труда большое значение имеет обеспечение работающих средствами индивидуальной защиты (СИЗ) от проникновения в организм человека вредных и опасных химических веществ и микроорганизмов ингаляционным (через органы дыхания), пероральным (через рот и органы пищеварения) путем и через кожу, а также защиты кожных покровов и глаз от вредного воздействия.
При наличии в воздухе вредных веществ и микроорганизмов в количестве, превышающем ГТДК, а также при вероятности их появления в ходе производственных процессов в результате неисправностей оборудования и аварий необходимо пользоваться СИЗ органов дыхания, а в случае наличия веществ, действующих через кожу, также СИЗ кожи.
СИЗ органов дыхания подразделяются на два основных класса: фильтрующие и изолирующие.
Фильтрующие СИЗ наиболее просты, надежны и не ограничивают работающему свободу передвижения. К фильтрующим СИЗ относятся: респираторы, противогазы, фильтрующие самоспасатели.
Условия применения фильтрующих СИЗ ограничены. Запрещается их использование в следующих случаях:
объемная доля кислорода в воздухе менее 18 %;
в воздухе содержатся вещества, защита от которых не предусмотрена инструкцией по эксплуатации;

концентрация вредных веществ в воздухе превышает максимальные значения, предусмотренные инструкцией по эксплуатации;
в воздухе содержатся неизвестные вредные вещества, а также низкокипящие и плохо сорбирующиеся органические вещества, такие как, метан, этан, бутан, этилен, ацетилен и пр.
Выбор СИЗ фильтрующего действия в значительной степени зависит от условий, в которых они должны эксплуатироваться, агрегатного состояния вредных веществ в воздухе, их концентрации.
Вредные вещества могут присутствовать в воздухе в паро-, газообразном состоянии и виде аэрозолей — пыли, дыма и тумана. В технической характеристике любого СИЗ приводятся данные, по которым осуществляется выбор и использование средства. К параметрам, по которым осуществляется выбор СИЗ фильтрующего действия, относятся:
массовая концентрация пыли в воздухе, мг/м3 (для противопылевых респираторов);
содержание вредных веществ в воздухе, которое может быть выражено в единицах массовой концентрации (мг/л) или объемных долях;
время защитного действия — промежуток времени от начала поступления вредного вещества в средство защиты до появления за ним предельно допустимой концентрации вещества;
максимальная концентрация вредных веществ, при которой может применяться данное средство, — концентрация, выше которой может произойти быстрое повышение концентрации вредного вещества на вдохе более допустимой или разогрев вдыхаемого воздуха выше допустимого значения;
коэффициент подсоса — отношение концентрации вредного вещества, проникающего под лицевую часть, минуя фильтрующий элемент, к ее начальной концентрации в воздухе, выраженное в процентах;
коэффициент проницаемости — отношение концентрации аэрозоля вредного вещества после фильтрующего элемента к его начальной концентрации, выраженное в процентах.
Пересчет массовой концентрации С (мг/л) паро- и газообразных веществ в объемные доли Р (%) производится по формуле
Р |
2,24С |
, |
|
М |
|||
|
|
где 2,24 — коэффициент пересчета; М — молекулярная масса вредного вещества.
Если в воздухе содержится несколько вредных веществ, то их суммарная объемная доля определяется сложением объемных долей каждого вещества, подсчитанных по указанной формуле.
Коэффициенты подсоса и проницаемости СИЗ, приводимые в технических характеристиках, определяются по двум модельным веществам: масляному туману (диаметр частиц 0,3 мкм), моделирующему мелкодисперсные аэрозоли вредных веществ, и микропорошку марки М-5 (средний диаметр частиц 1...15

мкм), моделирующему крупнодисперсные аэрозоли вредных веществ. Респираторы. Респираторы могут быть разнообразных видов в зависимости
от состава вредных веществ, их концентрации и требуемой степени защиты. Наиболее широкое распространение получили противопылевые
респираторы (рис. 3.93). Противопылевые респираторы не защищают органы дыхания от газов, паров и легковоспламеняющихся веществ.
Рисунок 3.93 Противопылевые респираторы
При необходимости защиты органов дыхания от вредных газов и паров применяются респираторы, состоящие из резиновой полумаски и поглощающих газы патронов и предназначенные для защиты от вредных веществ при концентрациях, не превышающих 10... 15 ПДК На рис. 3.94 показаны газозащитные респираторы различных марок.
Рисунок 3.94 Газозащитные респираторы
Респираторы могут обеспечивать защиту органов дыхания не только на производстве, но и в бытовых условиях при проведении лакокрасочных, ремонтных работ, на приусадебном участке — при работе с порошкообразными удобрениями и ядохимикатами, а также при разбрызгивании жидких удобрений и ядохимикатов.
Промышленные противогазы предназначены для защиты органов дыхания, лица и глаз от вредных веществ, присутствующих в воздухе. В зависимости от применяемых коробок противогаз может защищать от газов (паров) вредных веществ (с поглощающими коробками), от аэрозолей вредных веществ (с фильтрующими коробками) и одновременно от газов (паров) и аэрозолей вредных веществ (с фильтрующе-поглощающими коробками).
В зависимости от массы и размеров коробки противогазы выпускаются трех типов: малого габарита, среднего габарита и большого габарита. В противогазах малого габарита коробка размещена непосредственно на лицевой

части (рис. 3.95), что придает определенные удобства при работе.
Рисунок 3.95 Противогазы малого габарита
В противогазах среднего габарита коробка размешается либо на лицевой части или в сумке и соединена с лицевой частью с помощью соединительной трубки (рис. 3.96).
Рисунок 3.96 Противогазы среднего габарита
В противогазах большого габарита коробка размещена в сумке. Противогазы могут комплектоваться одним из трех типов лицевых частей: шлеммаской (рис. 3.97), маской или панорамной маской (рис. 3.98).
Рисунок 3.97 Шлем-маска противогаза

Рисунок 3.98 Панорамная маска противогаза
Фильтрующе-поглощающие и поглощающие коробки для противогазов и патроны для респираторов выпускаются различных марок в зависимости от конкретных строго определенных вредных веществ в виде паров (газов). Марка коробки и патрона указывается на их корпусе. Характеристики коробок различных марок приведены в табл. 1 Приложения 3. Патроны респираторов маркируются аналогично.
Рекомендации по применению для защиты от смесей ряда вредных веществ определенных марок коробок противогазов и патронов респираторов приведены в табл. 2 того же приложения.
Изолирующие противогазы и самоспасатели. Действие изолирующих противогазов и самоспасателей основано на использовании химически связанного кислорода. Они имеют замкнутую маятниковую схему дыхания: выдыхаемый человеком воздух попадает в регенеративный патрон, в котором поглощаются выделенный человеком углекислый газ и пары воды, а взамен выделяется кислород. Затем дыхательная смесь попадает в дыхательный мешок. При вдохе газовая смесь из дыхательного мешка снова проходит через регенеративный патрон, дополнительно очищается и поступает для дыхания.
Изолирующие противогазы (см. рис. 3.99) обеспечивают более длительное время работы в них, чем изолирующие самоспасатели, более комфортные условия работы, являются средствами многократного применения при условии замены регенеративного патрона после каждого использования противогаза.
Рисунок 3.99 Изолирующий противогаз

Отличительной особенностью изолирующих самоспасателей (рис. 3.100) является то, что уже в заводской упаковке они полностью готовы к применению.
Рисунок 3.100 Изолирующий самоспасатель
Для включения самоспасателя с целью обеспечения защиты необходимо несколько секунд. Поэтому они применяются в случаях аварий и непредусмотренных технологическим процессом выделениях (выбросах) вредных веществ.
При выделении вредных веществ и микроорганизмов (вирусов, бактерий и т. д.), которые могут проникать (заражать) человека через кожные покровы, применяются изолирующие комплекты (рис. 3.101). Такие комплекты состоят из комбинезона с капюшоном, рукавиц, осоюзки и снабжаются дыхательным аппаратом.
Рисунок 3.101 Изолирующий комплект
Глава 3
ЗАЩИТА ЧЕЛОВЕКА ОТ ОПАСНОСТИ МЕХАНИЧЕСКОГО ТРАВМИРОВАНИЯ
Для защиты от механического травмирования применяют следующие способы:
недоступность для человека опасных объектов;
применение устройств, защищающих человека от опасного объекта;
применение средств индивидуальной защиты.
3.1 Методы и средства защиты для технологического оборудования и инструмента
Существует много способов обеспечить защиту машин, механизмов, инструмента. Тип работы, размер или форма обрабатываемого материала, метод обработки, расположение рабочего участка, производственные требования и ограничения помогают определить подходящий для данного оборудования и инструмента способ защиты.
Защитные устройства должны удовлетворять следующим минимальным общим требованиям:
предотвращать контакт. Защитное устройство должно предотвращать контакт рук или других частей тела человека или его одежды с опасными движущимися частями машины, не позволять человеку — оператору машины или другому рабочему — приблизить руки и другие части тела к опасным движущимся частям;
обеспечивать безопасность. Рабочие не должны иметь возможность снять или как-то обойти защитное устройство. Защитные устройства и устройства безопасности должны быть изготовлены из прочных материалов, выдерживающих условия нормальной эксплуатации. Их следует надежно прикреплять к машине;
закрывать от падающих предметов. Защитное устройство должно обеспечить такое положение, при котором ни один предмет не мог бы попасть в движущие части машины и вывести ее тем самым из строя или срикошетить от них и нанести кому-нибудь травму;
не создавать новых опасностей. Защитное устройство не выполнит своего предназначения, если оно само создаст хоть какую-нибудь опасность: режущую кромку, заусенец или шероховатость поверхности. Края защитных устройств, например, должны быть так загнуты или закреплены, чтобы не было острых кромок;
не создавать помех. Защитные устройства, которые мешают выполнять работу, рабочие могут снять или игнорировать.
Наибольшее применение для защиты от механического травмирования машин, механизмов, инструмента находят оградительные, предохранительные,