- •1. Классификация промысловых систем сбора и транспорта скважинной продукции. Требования к системам сбора. Преимущества и недостатки различных систем сбора.
- •Выбор той или иной системы обусловлен рядом технологических и исторических факторов.
- •2.Классификация продукции г-овой промышленности. Требования к качеству газа, подаваемого в мг. Основные требования к качеству сжиженных газов и стабильного конденсата.
- •Требования к качеству г, подаваемого в мг:
- •4. Выбор структуры системы сбора и местоположение объектов по подготовке у/в-го сырья на гкм.
- •5. Тепловой расчёт в шлейфах.
- •5,. Гидравлический расчёт шлейфов.
- •6. Снижение пропускной способности трубопроводов при эксплуатации ГиГкм. Причины, вызывающие снижение пропускной способности, методы предупреждения и борьба с ними.
- •7. Общая характеристика г-овых гидратов. Условия образования гидратов. Влияние различных различныхфакторов на процессы образования и разложения гидратов.
- •Где I и y – относительные плотность и молярная доля г/о-теля.
- •9. Физико-химические св-ва ингибиторов. Метанол, гликоли, новые ингибиторы…….
- •10. Определение расхода нелетучего и летучего ингибитора.
- •13. Методы борьбы с солеотложениями в пр-се добычи и подготовки газа…
- •14. Способы разрушения отложения солей….
- •15. Теоретические основы сеп-и. Основные типы конструкций сеп-в и их экспл-е пок-ли. Принцип работы сеп-в.
- •16. Технол-й расчет гравитационных сепараторов с жалюзийными насадками
- •18. Общая характеристика прямоточных центробежных элементов. Газовый сепаратор Центробежный Регулируемый.
- •20. Расчет процесса дросселирования п Газа.
- •25. Технологические схемы промысловой обработки г методом нтс
- •26.Периоды работы установок нтс. Выбор режима.
- •27.Расчетная схема газового эжектора. Основные технологические показатели эжекторов.
- •28. Технологическая схема унтс с тедандерно-компрессорными агрегатами.
- •29. Абсорбц-я осушка природного газа. Жидкие осушители и их свойства.
- •31. Определение основных величин, характеризующих процессы осушки газа и регенерации дэГа. Кратность циркуляции дэГа…….
- •32. Отработка дэГа в абсорберах…….
- •33. Опыт эксплуатации и модернизации технологического оборудования укпг на унгкм
- •34. Опыт нормирования и прогнозирования потерь дэГа на укпг сеноманской залежи угкм.
- •37. Совершенствование технологии подготовки газа на месторождениях Кр. Севера.
- •38. Технология схема укпг-1в ягкм. Однореагентная схема с использованием метанола.
- •39. Адсорбционный способ осушки газа
- •1.Особенности притока газа к забою газовой скважины
- •2.Фазовые состояния углеводородных систем: условия равновесия, двухфазная система.
- •Количественное решение двухфазной системы:
- •3. Явления обратной конденсации и испарения.
- •4. Эффект Джоуля – Томсона…..
- •5. Газовые скважины. Требования к конструкции скважин и выбор диаметра эксплуатационной…
- •Определение диаметра фонтанных труб газовой скважины:
- •6. Наземное и подземное оборудование скважин
- •7.Средства регулирования технологическим режимом работы скважины (диафрагмы……
- •8. Конструкция и оборудование скважин при орэ
- •9. Конструкция и оборудование скважин при добыче газа с кислыми компонентами.
- •10. Конструкция и оборудование скважин в районе ммп.
- •11. Эксплуатация добывающих скважин газлифтным способом на месторождениях с нефтяными оторочками.
- •12. Особенности вскрытия продуктивного газового пласта. Оборудование забоя добывающей скважины.
- •13. Приборы и аппаратура применяемые при исследованиях газовых и газоконденсатных скважин. Глубинные манометры, термометры….
- •14. Исследование пластов и газовых скважин. Общие положения. Обвязка газовых скважин….
- •15. Технология проведения исследований скважин на стационарных режимах.
- •16. Исследование скважины на нестационарных режимах и подготовка скважины к исследованию. Технология проведения исследования….
- •17. Методика обработки и интерпритации результатов исследования на нестационарных режимах с целью определения параметров плас.
- •18. Технологический режим работы вертикальной газовой скважины при постоянной депрессии и постоянном забойном давлении.
- •19. Технологический режим работы вертикальной газовой скважины при постоянном дебите или постоянной скорости фильтрации.
- •20.Технологический режим работы горизонтальной газовой скважины при постоянной депрессии и постоянном забойном давлении.
- •22. Эксплуатация газовых скважин в условиях разрушения коллектора. Общие положения о режиме работы скважины при разрушении пзп, устойчивость горных пород.
- •23. Технологический режим работы газовой скважины продуцирующей агрессивные компоненты.
- •24. Виды коррозии газопромыслового оборудования и защита от нее..
- •25. Влагосодержание природных газов. Общая характеристика гидратов и условия их образования.
- •26. Гидраты индивидуальных и природных углеводородных газов.
- •27. Образование гидратов в добывающих скважинах и способы их устранения…
- •28 Предупреждение и борьба с образованием гидратов природных газов. Основы ингибирова..
- •29. Особенности эксплуатации обводняющихся газовых и газоконденсатных месторождений. Применение химреагентов….
- •30. Использование кислотных и щельчных составов, применяемых в процессах обработки пзп. Выбор метода.
- •31. Механические методы интенсификации притока (грп, гпсп)….
- •33. Безопасность труда в газовом хозяйстве. Выполнение газоопасных работ.
- •34. Технологирческий режим работы вертикальной скважины обводняющейся подошвенной водой.
- •35. Солеобразование в добывающих газовых скважинах. Методы удаления солеотложений.
- •36. Принцип работы газлифтного подъемника непрерывного и периодического действия.
- •37. Влияние песчаной пробки на технологический режим работы горизонтальной газовой скважины. Методика расчета критической депрессии разрушения пзп.
- •38. Газоконденсатные исследования скважин. Цели и задачи исследований…..
- •39. Уравнения состояния природных газов
- •32. Определение зоны возможного гидратообразования и безгидратного режима работы газовой скважины.
- •1. Приближенная методика расчета Сайклинг-процесса
- •2. Понятие пластового и горного давлений. Определение приведенного пластового р в гз и его расчет по замерам пластового давления в скв. Определение среднезвешенного пластового р в гз.
- •3. Использование принципа суперпозиции в расчетах внедрения краевой воды в газовую залежь круговой формы.
- •4. Теория укрупненной скважины Ван-Эвердингена и Херста для расчета внедрения воды в газовую залежь (случаи постоянного дебита и постоянной депрессии).
- •5.Соотношение контурного и средневзвешенного пластового давления в газовой залежи круговой формы (вывод).
- •6.Конечно-разностный аналог дифференциального уравнения неустановившейся одномерной фильтрации жидкости с единичными коэффициентами (вывод).
- •7. Решение системы конечно-разностных уравнений методом прогонки (для случая неустановившейся плоскопараллельной фильтрации жидкости в пласте с единичными коэффициентами).
- •9. Классификация месторождений природных газов.
- •10.Учет в уравнении материального баланса газовой залежи деформации коллекторов.
- •12. Особенности расчета показателей разработки в период падающей добычи в условиях газового режима (для технологического режима эксплуатации скважин постоянной депрессии на пласт).
- •14.Фазовая диаграмма газоконденсатных смесей и особенности разработки газоконденсатных месторождений на истощение.
- •15.Понятие и определение параметров средней скважины.
- •16. Приближенная методика расчета внедрения воды по схеме "укрупненной" скважины.
- •17.Системы разработки многопластовых (многозалежных) месторождений и условия их применения. Понятие "эксплуатационный объект".
- •19. Расчет добычи конденсата по данным дифференциальной конденсации.
- •21. Вывод уравнения материального баланса газовой залежи для водонапорного режима.
- •23. Вывод уравнения материального баланса для газовой залежи при газовом режиме.
- •25.Режимы газовых залежей. Характерные зависимости приведенного пластового давления от накопленной добычи газа.
- •28. Особенности расчетов внедрения воды в газовые залежи круговой формы со слоисто-неоднородными коллекторами.
- •30. Вывод уравнения материального баланса газовой залежи для водонапорного режима.
- •26. Приближенная методика расчета внедрения воды по схеме "укрупненной" скважины.
- •27.Фазовая диаграмма газоконденсатных смесей и особенности разработки газоконденсатных месторождений на истощение.
- •31. Основные разделы проекта разработки месторождения и порядок его рассмотрения.
- •35.Особенности разработки нефтегазоконденсатных залежей и формирования газоконденсатонефтеотдачи.
- •38. Средства и методы контроля над разработкой месторождений природного газа.
- •33. Вывод уравнения материального баланса для газовой залежи при газовом режиме.
- •39.Фазовая диаграмма газоконденсатных смесей и особенности разработки газоконденсатных месторождений на истощение.
- •37.Системы разработки многопластовых (многозалежных) месторождений и условия их применения. Понятие "эксплуатационный объект".
- •32.Режимы газовых залежей. Характерные зависимости приведенного пластового давления от накопленной добычи газа.
26. Приближенная методика расчета внедрения воды по схеме "укрупненной" скважины.
В работе с исп-нием метода интегральных соотношений получено решение для случая экспл-и укрупненной скв-ны при переменном во времени дебите воды. Искомое приближенное решение:
Pн -P(Rз,t)= вqв(t) P(fo')/(2kh) (1)
Вводится fo' – фективное безразмерное время
fo' = χQВ(t)/(R2З qв(t)) (2)
(3)
Фективное – т к формально QВ(t)- накопленная добыча воды
QВ(t)=интег(0, t) qВ(t)dt поэтому отношение [[QВ(t)/[ qВ(t)]=[t]=T.
Если χ/R2З=1, то fo совпадает со временем fo= χt/R2З, а fo' – не совпадает, только когда qВ=const и QВ= qВt, QВ/qВ =t и fo' совпадает с безразмерным временем fo'= fo
Согласно МПССС можем описать потери Р м/у контурами
P[Rз(t)]-P[R(t)]=P(Rз(t))-(t)=μВqВ ln(RЗ/R(t))/(2πkВh) (4)
Сложим 1 и 4, и учтем kВ=k*Вk
Pн-(t)= μВqВ[P(fo')+(1/k*В) ln(RЗ/R(t)]/ (2πkh) (5)
qВ(t)= 2πkh[Pн-(t)]/{ μВ[P(fo')+(1/k*В) ln(RЗ/R(t))]} (6)
Расчеты верны с расчетом по шагам времени. Описываем ступенчатой зависимостью.
Ур-е (5) вместе с (2) и (3) доп-ся ур-ем матер.баланса для ВНР, а также зав-стью z=z(P) и заданной динамикой отбора газа. Расчеты ведут по итерациям, т к одновременно присутствую несколько неизвестных (qВ(t); (t); R(t)), которые уточняются.
R(t)=[ R2З- QВ(t)/( πmh(-αост))]0.5
y=y(QВ(t)/(-αост))
27.Фазовая диаграмма газоконденсатных смесей и особенности разработки газоконденсатных месторождений на истощение.
Пластовая гкc – сложная система, сост-я из большого числа у/в, азота, Н2S, CO2, He, паров воды. Рассмотрим диаграмму фазовых превращений гкc. При повышении P и Т=const или понижении T и P=const происходят пр-сы конденсации пара в ж-ть.
Рис. I. Диаграмма фазовых превращений гкс постоянной массы и состава при изм-и Р и Т. Зав-ть P=f(T) для чистого у/в характеризуется кривой ОК. Ниже кривой - сущ-т паровая фаза, выше- одна жидкая фаза, к- критическая точка характеризует крит-ю температуру Tкр (паровая и ж-я фаза нах-ся в равновесии). Рассмотрим фазовую диаграмму гкс. Кривая ССкр – линия кипения (выше- ж-ть), СкрБСккДИ – линия конденсации. Скк – ж-я и паровая фазы могут нах-ся в равновесии. Рассмотрим изотермический пр-с понижения Р от т. А (ув в области г-й фазы). От т. А до т. Б не происходят изм-я. В т. Б при понижении P обр-ся первая капля ж-ти, т.е происходит обратная конденсация, т. В - max конденсация. Область СкрВСккБСкр – область обратной конденсации, от В до Д – испарение ж-ти. В т. Д – испаряется последняя капля ж-ти. От т. Д до Е – не происходят фазовые превращения и смесь в Е нах-ся в г-м состоянии. Пр-с обратной конденсации происходит только в интервале температур Ткр–Ткк. ГКМ разрабатывается в режиме истощения пластовой энергии при небольшом содержании к-та в г, когда нецелесообразно ППД. К-т в пласт попадает повсеместно, однако выпадающий к-т зачастую мало изменяет коэф-нт газонасыщенности всего пласта. Следовательно фил-онные течения могут рассматриваться в рамках однофазных течений, т.к. выпадающий к-т неподвижен. Малая к-тонасыщенность пласта приводит к небольшим изм-ям его емкостных и фил-онных параметров. Двухфазная функция имеет место в ПЗП. Определяются следующие дополнительные показатели разр-и ГКМ: 1. возможные потери к-та в пласте (необходимо ли ППД для добычи конденсата). 2. данные об изм-и во времени добывания кол-ва и состава к-та и г-образной фазы в продукции залежи.