
- •Министерство образования и науки Российской Федерации
- •Введение
- •1 Условные обозначения
- •2 Содержание и порядок выполнения
- •3.2 Расчет напряжений и деформаций при кручении стержней
- •3.2.1 Построение эпюры крутящих моментов
- •3.2.2 Определение размеров сечения вала
- •3.2.3 Определение деформаций вала постоянного поперечного сечения
- •3.3 Построение эпюр поперечных сил и изгибающих моментов. Расчет на прочность при изгибе
- •3.3.1 Построение эпюр поперечных сил и изгибающих моментов
- •3.3.2 Определение размеров сечений балок
- •3.4 Совместное действие изгиба и кручения
- •Задача № 4 расчет вала на совместное действие изгиба и кручения
- •Список литературы
Введение
Под действием нагрузок элементы конструкции изменяют свою форму и размеры, т.е. деформируются, а в некоторых случаях происходит разрушение конструкции. Опыт эксплуатации показывает, что надежным обычно оказывается такое оборудование, материал и размеры элементов которого выбраны на основе следующих главных критериев работоспособности: прочности, жесткости, устойчивости, коррозионной стойкости и др.
Прочностью называется способность конструкции, ее узлов и деталей выдерживать заданные внешние нагрузки не разрушаясь. Расчеты на прочность дают возможность определить оптимальные параметры детали, способные выдерживать заданную нагрузку, при наименьшей затрате материала. Для этого элементы конструкции должны быть изготовлены из соответствующего материала и иметь необходимые размеры.
Жесткость – способность элемента конструкции сопротивляться деформации. Расчеты на прочность и жесткость, как и любые другие расчеты элементов оборудования, включают три взаимосвязанные этапа.
На первом этапе выбирается расчетная схема конструктивного элемента. Схема элемента конструкции, условно освобожденная от несущественных особенностей, носит название расчетной схемы. Чаще всего при составлении расчетных схем сложных конструктивных элементов оборудования вводят упрощения в геометрию реальных объектов, приводя объект к расчетной схеме стержня или бруса, оболочки или пластины, массивного трехмерного тела (массива).
На втором этапе расчета применительно к выбранной расчетной схеме элемента определяются:
внутренние усилия;
напряжения;
деформации,
возникающие под действием внешних сил в этом конструктивном элементе.
При деформации тела под действием внешних сил внутри него, в результате существования внутренних сил молекулярного взаимодействия, возникают силы упругости, препятствующие деформации и стремящиеся вернуть частицы тела в первоначальное положение. При возрастании внешних сил увеличиваются внутренние, но лишь до определенного предела, выше которого наступает разрушение тела. Способность элементов конструкции устранять деформацию, вызванную внешними силами после прекращения их действия, называется упругостью.
Для расчета элементов конструкций на прочность необходимо определять внутренние силы по заданным внешним силам. При определении величины внутренних сил используется метод сечений, сущность которого заключается в следующих четырех действиях:
1) мысленно рассекают тело плоскостью, перпендикулярной его оси, в том месте, где требуется определить внутренние силы;
2) отбрасывают любую (правую или левую) часть тела;
3) заменяют действие отброшенной части внутренними силами, чтобы оставшаяся часть находилась в равновесии;
4) составляют уравнения равновесия для сил, действующих на оставшуюся часть тела, и определяют внутренние силы.
Таким образом, продольная сила в поперечном сечении прямого бруса численно равна алгебраической сумме проекций на его ось всех внешних сил, приложенных по одну сторону от рассматриваемого сечения. В общем случае нагружения тела может быть составлено шесть уравнений равновесия сил, действующих на оставленную часть:
;
;
;
;
;
.
В каждое уравнение равновесия входит лишь один внутренний силовой фактор.
∑Fix,, ∑Fiy, ∑Fiz – сумма проекции всех внешних сил, действующих на оставленную часть тела, соответственно на оси Х, У, Z.
∑Mox(Fi), ∑Moy(Fi), ∑Moz(Fi) – сумма всех внешних моментов, действующих на оставленную часть тела, соответственно относительно оси Х, У, Z.
Указанные шесть внутренних силовых факторов называются:
Qz (N) – продольная сила;
Qx и Qy – поперечные силы;
Mx и My – изгибающие моменты;
Mz (T) – крутящий момент.
В частном случае отдельные силовые факторы могут быть равны нулю. Мерой интенсивности распределения внутренних сил служит напряжение. Напряжение – это внутренняя сила, приходящаяся на единицу площади сечения. В Международной системе единиц (СИ) размерность напряжения – паскаль (Па=Н/м2).
Напряжение Ньютон
на метр квадратный очень мало, поэтому
применяют кратную единицу измерения
мегапаскаль (МПа = Н/мм2;
);
1 МПа = 106
Н/м2.
Это удобно еще и потому, что размеры на чертежах указываются в милиметрах.
Таким образом, основная задача второго этапа расчета заключается в нахождении и анализе математических соотношений между известными внешними силами, геометрическими размерами рассматриваемого конструктивного элемента из выбранного материала и возникающими внутренними силами упругости, деформациями и напряжениями.
На третьем этапе сопоставляются вычисленные во втором этапе напряжения и деформации с допускаемыми значениями, которые установлены экспериментом на основании опыта эксплуатации конструкции при условии
нормального функционирования и обеспечения надежности работы конструкции.
В данной расчетно–графической работе студенты последовательно изучают все три этапа расчетов, часто встречающихся в инженерной практике.