
- •Иллюстрация уравнения бернулли. Построение линий энергии и потенциальной энергии (лабораторная работа № 3)
- •Общие сведения
- •Цель работы
- •1.3. Описание опытного устройства
- •1.4. Порядок выполнения работы
- •1.5. Содержание отчета
- •1.6. Вопросы для самопроверки
- •2. Изучение структуры потоков жидкости. Определение режима течения (лабораторная работа №4)
- •2.1. Общие сведения
- •2.2. Цель работы
- •2.3. Описание лабораторного устройства
- •2.4. Порядок выполнения
- •2.5. Содержание отчета
- •2.6. Вопросы для самопроверки
- •3. Определение потерь напора по длине (лабораторная работа №6)
- •3.1. Общие сведения
- •3.2. Цель работы
- •3.3. Описание опытной установки
- •3.4. Порядок выполнения работы
- •3.5. Содержание отчета
- •3.6. Вопросы для самопроверки
- •Список литературы
- •Содержание
В учебно-методическом пособии приводятся основные теоретические сведения, содержание и порядок выполнения лабораторных работ по гидравлике на разработанной доцентом Томского архитектурно-строительного университета Г.Д. Слабожаниным портативной лаборатории «Капелька».
Составители: Лапшакова И. В., доц., канд. техн. наук
Клявлин М.С., проф., д-р хим. наук
Рецензент: Мартяшова В.А., доц., канд. техн. наук
© Уфимский государственный нефтяной технический университет, 2008
Иллюстрация уравнения бернулли. Построение линий энергии и потенциальной энергии (лабораторная работа № 3)
Общие сведения
Закон сохранения энергии в гидравлике выражается уравнением Бернулли. Для струйки невязкой жидкости оно имеет вид
z+p/ρg+u2/2g=const , (1)
где z – нивелирная высота, м;
p – давление, Па;
ρ – плотность, кг/м3;
g – ускорение свободного падения, м/с2;
u – скорость, м/с.
При движении вязкой жидкости имеют место потери на трение h1-2. Для потока вязкой жидкости уравнение Бернулли имеет вид:
z1+p1/ρg+v12/2g = z2+p2/ρg+v22/2g +h1-2 , (2)
Индексы «1» и «2» указывают на номер сечения, к которому относится величина.
Слагаемые уравнения выражают энергии, приходящиеся на единицу веса (силы тяжести) жидкости, которые в гидравлике принято называть напорами: Нn = z+p/ρg - пьезометрический напор (потенциальная энергия), Hк = v2/2g - скоростной напор (кинетическая энергия), Н = z+p/ρg+v2/2g - полный (гидродинамический) напор (полная механическая энергия жидкости), h1-2 - потери напора (потери механической энергии за счет ее преобразования в тепловую энергию). Такие энергии измеряются в единицах длины, т.к. Дж/Н = м.
Через гидродинамический напор уравнение Бернулли имеет вид:
H1-H2=h1-2 (3)
В формуле (2) V означает среднюю скорость, а коэффициент Кориолиса α учитывает распределение скоростей в живом сечении. Если мы соединим уровни жидкости в пьезометрах (см. рис.2), то получим линию потенциальной энергии, показывающую изменение потенциальной энергии потока относительно плоскости сравнения. Соединив гидродинамические напоры в разных сечениях , получим линию энергии. Энергия h1-2 превращается в тепло и рассеивается в пространстве. Процесс превращения механической энергии в тепловую с последующим рассеиванием в пространстве называется диссипацией. Диссипация – процесс необратимый. Потеря энергии на единицу длины называется гидродинамическим уклоном
i=-dН/dL=-d(z+p/ρg+v2/2g)/dL. (4)
Изменение потенциальной энергии характеризуется пьезометрическим уклоном
I=-d(z+p/ρg)/dL. (5)
Гидравлический уклон всегда положителен и равен тангенсу угла наклона между касательной к линии энергии в рассматриваемом сечении и обратным направлением движения.
В то же время давление вдоль движения может уменьшаться или увеличиваться (при увеличении или уменьшении скорости), вследствие чего пьезометрический уклон может быть и положительным и отрицательным.
Цель работы
Визуально наблюдать переход энергии из потенциальной в кинетическую и обратно.
Построить линии энергии и потенциальной энергии для трубопровода переменного сечения.
1.3. Описание опытного устройства
Устройство содержит баки 1 и 2, сообщаемые через каналы переменного 3 и постоянного 4 сечений (рис. 1). Каналы соединены между собой равномерно расположенными пьезометрами I-V, служащими для измерения пьезометрических напоров в характерных сечениях. Устройство заполнено подкрашенной водой. В одном из баков предусмотрена шкала 5 для измерения уровня воды. При перевертывании устройства благодаря постоянству напора истечения Но во времени, обеспечивается установившееся движение воды в нижнем канале. Другой канал в это время пропускает воздух, вытесняемый жидкостью из нижнего бака в верхний.
Рис.1. Опытное устройство: 1,2 - баки; 3,4 — каналы переменного и постоянного сечения; 5 - уровнемерная шкала; I-V – пьезометры