
- •Стерлитамакский филиал
- •7. Э л е к т р о х и м и я в в е д е н и е
- •И с т о р и ч е с к и й о ч е р к
- •7.1 Растворы электролитов
- •7.1.1 Основы теории электролитической диссоциации
- •Причины электролитической диссоциации
- •7.1.2 Теория сильных электролитов дебая и гюккеля
- •7.2.1 Удельная и эквивалентная электропроводности
- •7.2.2 Закон кольрауша
- •7.2.3 Зависимость электропроводности сильных и слабых электролитов от концентрации электролита
- •7.2.4 Подвижность и числа переноса ионов
- •7.2.5 Кондуктометрия
- •7.2.5.1 Измерение электропроводности
- •7.2.5.2 Применение кондуктометрии
- •1.Степень диссоциации электролитов
- •2. Константа диссоциации электролита
- •3.Определение произведения растворимости (пр) труднорастворимых соединений (электролитов).
- •4.Кондуктометрическое титрование
- •5.Электропроводность как метод физико-химического анализа
- •7.3 Электродвижущие силы и равновесные электродные потенциалы
- •7.3.1 Гальванический элемент и электролизер. Законы электролиза
- •7.3.2.1 Термодинамика гальванического элемента
- •7.3.2.2 Определение термодинамических параметров химической реакции
- •7.3.3 Скачки потенциала на границе раздела фаз в электрохимических системах
- •7.3.4 Электродные потенциалы
- •7.3.5 Классификация электродов
- •7.3.6 Водородный электрод
- •7.3.7 Каломельный электрод
- •Потенциал его определяемся соотношением
- •7.3.8 Измерение эдс. Нормальный элемент
- •7.3.9 Концентрационные цепи
- •К цепям второго рода относятся цепи с газовыми или амальгамными электродами.
- •7.3.10 Диффузионные потенциалы
- •7.3.11 Окислительно-восстановительные электроды и цепи
- •7.3.12 Применение потенциометрических методов
- •7.3.13 Стеклянный электрод
- •7.3.14 Потенциометрическое титрование
- •7.4 Неравновесные электрохимические процессы
- •7.4.1 Поляризация
- •7.4.2 Концентрационная поляризация
- •7.4.4 Перенапряжение выделения водорода
- •7.4.5 Полярография
- •Топливные элементы
- •Метода защиты металлов от коррозии
- •8. Химическая кинетика
- •8.1 Скорость химической реакции
- •8.4 Необратимая реакция второго порядка
- •8.5 Обратимая реакция первого порядка
- •А в.
- •8.6 Обратимая реакция второго порядка
- •8.7 Параллельные реакции
- •8.8 Последовательные реакции
- •Подставим выражение в уравнение. Тогда
- •8.9 Методы определения порядка реакции
- •8.10 Влияние температуры на скорость реакции
- •8.11 Теория активных столкновений молекул
- •8.12 Применение теории столкновений к бимолекулярным реакциям. Расчет константы скорости
- •8.13 Бимолекулярный механизм активации мономолекулярной реакции
- •8.14 Теория активного комплекса или переходного состояния
- •8.15 Цепные реакции
- •8.16 Фотохимические реакции
- •8.17 Особенности гетерогенных процессов
- •Растворение твердых тел в жидкостях
- •9. Каталитические реакции
- •9.1 Особенности и классификация каталитических процессов
- •9.2 Гомогенный катализ
- •9.3 Обобщенная теория кислот и оснований. Кислотно-основный катализ
- •9.6 Теории гетерогенного катализа
- •9.6.1 Мультиплетная теория
- •9.6.2 Теория активных ансамблей
- •9.6.3 Электронная теория
- •Содержание
- •7.4 Неравновесные электрохимические процессы
- •8. Химическая кинетика
- •9. Каталитические реакции
- •450062, Г. Уфа, ул. Космонавтов, 1.
- •453118, Г. Стерлитамак, пр. Октября, 2.
9.6 Теории гетерогенного катализа
В настоящее время не существует единой теории гетерогенных каталитических реакций, на основе которой можно было бы безошибочно выбрать для каждой реакции наиболее подходящий катализатор. Отдельные теории объясняют лишь частные стороны сложных каталитических явлений.
9.6.1 Мультиплетная теория
Мультиплетная теория, предложенная А. А. Баландиным, исходит из принципа структурного (или геометрического) соответствия между расположением атомов на активных участках поверхности катализатора и строением молекул реагирующего вещества. Таким образом, теория рассматривает не просто взаимодействие молекул в целом с поверхностью катализатора, а взаимодействие отдельных атомов или атомных групп в молекуле реагирующего вещества (так называемых индексных групп) с определенными геометрически правильными группировками атомов или ионов поверхностного слоя катализатора. Согласно этой теории активными центрами на поверхности катализатора являются мультиплеты. Мультиплеты - это небольшие, состоящие из нескольких атомов или ионов (2, 3, 4, 6), участки кристаллической решетки катализатора, имеющие правильную конфигурацию, зависящую от строения всей кристаллической решетки катализатора. Адсорбированная молекула «садится» на такой мультиплет так, что разные ее индексные группы связываются с разными атомами мультиплета. При этом связи между атомами адсорбированных молекул склонны разрываться, если атомы индексной группы адсорбированы на разных атомах мультиплета, и, наоборот, они склонны замыкаться, если атомы адсорбированы на одном и том же атоме мультиплета. Например, дегидрирование этилового спирта, согласно теории мультиплетов, происходит на дублете, причем к одному атому дублета (К) притягиваются водородные атомы групп СН2 и ОН, а атом кислорода и углеродный атом группы СН2 - к другому (K1). В результате происходит разрыв связей С-Н и О-Н и образование связей Н-Н и С=О в молекулах уксусного альдегида и водорода (атомы дублета на поверхности катализатора изображены точками):
Если расстояния между атомами катализатора в дублете будут иными, то возможен другой процесс: водородный атом группы СН3 и кислородный атом притянутся к одному атому дублета, а оба углеродных атома к другому. В итоге продуктами реакции будет этилен и вода:
Каталитический эффект существенно зависит от соотношения расстояний между атомами активного центра и атомами в индексной группе реагирующей молекулы.
9.6.2 Теория активных ансамблей
Согласно этой теории, предложенной Н. И. Кобозевым в 1939 г., каталитически активным центром является совокупность (ансамбль) свободных атомов катализатора, находящихся на отдельном участке блока поверхности твердого тела. Эти атомы не входят в кристаллическую решетку и могут свободно мигрировать в пределах каждого блока. Разделение поверхности на отдельные блоки происходит вследствие образования микроскопических трещин, наличия примесей и различного рода неоднородностей поверхности реальных тел. Предполагается, что остальные атомы катализатора образуют кристаллическую фазу и играют роль неактивной подложки.
Опыты показали, что каталитическая активность адсорбционных катализаторов с увеличением количества атомов катализатора, находящихся на поверхности носителя, обычно возрастает лишь до некоторого предела, а затем снова уменьшается. Образование максимума на кривой активности с ростом степени заполнения поверхности атомами катализатора (отношение площади занятой поверхности ко всей поверхности катализатора) объясняется изменением числа ансамблей, состоящих для каждой реакции из строго определенного количества атомов.
Теория активных ансамблей позволяет использовать опытные данные для расчета количественного состава и активности каталитически активных центров. Было установлено, что для окислительных процессов активен одноатомный ансамбль, для реакций гидрирования - двухатомный и т. п. Изменение структуры поверхности и размера блоков, происходящее при введении примесей или вследствие термообработки и рекристаллизации, влияет на количество атомов в ансамблях. Этим объясняется промотирование, действие ядов и влияние способа приготовления катализатора на его активность.