
- •Стерлитамакский филиал
- •7. Э л е к т р о х и м и я в в е д е н и е
- •И с т о р и ч е с к и й о ч е р к
- •7.1 Растворы электролитов
- •7.1.1 Основы теории электролитической диссоциации
- •Причины электролитической диссоциации
- •7.1.2 Теория сильных электролитов дебая и гюккеля
- •7.2.1 Удельная и эквивалентная электропроводности
- •7.2.2 Закон кольрауша
- •7.2.3 Зависимость электропроводности сильных и слабых электролитов от концентрации электролита
- •7.2.4 Подвижность и числа переноса ионов
- •7.2.5 Кондуктометрия
- •7.2.5.1 Измерение электропроводности
- •7.2.5.2 Применение кондуктометрии
- •1.Степень диссоциации электролитов
- •2. Константа диссоциации электролита
- •3.Определение произведения растворимости (пр) труднорастворимых соединений (электролитов).
- •4.Кондуктометрическое титрование
- •5.Электропроводность как метод физико-химического анализа
- •7.3 Электродвижущие силы и равновесные электродные потенциалы
- •7.3.1 Гальванический элемент и электролизер. Законы электролиза
- •7.3.2.1 Термодинамика гальванического элемента
- •7.3.2.2 Определение термодинамических параметров химической реакции
- •7.3.3 Скачки потенциала на границе раздела фаз в электрохимических системах
- •7.3.4 Электродные потенциалы
- •7.3.5 Классификация электродов
- •7.3.6 Водородный электрод
- •7.3.7 Каломельный электрод
- •Потенциал его определяемся соотношением
- •7.3.8 Измерение эдс. Нормальный элемент
- •7.3.9 Концентрационные цепи
- •К цепям второго рода относятся цепи с газовыми или амальгамными электродами.
- •7.3.10 Диффузионные потенциалы
- •7.3.11 Окислительно-восстановительные электроды и цепи
- •7.3.12 Применение потенциометрических методов
- •7.3.13 Стеклянный электрод
- •7.3.14 Потенциометрическое титрование
- •7.4 Неравновесные электрохимические процессы
- •7.4.1 Поляризация
- •7.4.2 Концентрационная поляризация
- •7.4.4 Перенапряжение выделения водорода
- •7.4.5 Полярография
- •Топливные элементы
- •Метода защиты металлов от коррозии
- •8. Химическая кинетика
- •8.1 Скорость химической реакции
- •8.4 Необратимая реакция второго порядка
- •8.5 Обратимая реакция первого порядка
- •А в.
- •8.6 Обратимая реакция второго порядка
- •8.7 Параллельные реакции
- •8.8 Последовательные реакции
- •Подставим выражение в уравнение. Тогда
- •8.9 Методы определения порядка реакции
- •8.10 Влияние температуры на скорость реакции
- •8.11 Теория активных столкновений молекул
- •8.12 Применение теории столкновений к бимолекулярным реакциям. Расчет константы скорости
- •8.13 Бимолекулярный механизм активации мономолекулярной реакции
- •8.14 Теория активного комплекса или переходного состояния
- •8.15 Цепные реакции
- •8.16 Фотохимические реакции
- •8.17 Особенности гетерогенных процессов
- •Растворение твердых тел в жидкостях
- •9. Каталитические реакции
- •9.1 Особенности и классификация каталитических процессов
- •9.2 Гомогенный катализ
- •9.3 Обобщенная теория кислот и оснований. Кислотно-основный катализ
- •9.6 Теории гетерогенного катализа
- •9.6.1 Мультиплетная теория
- •9.6.2 Теория активных ансамблей
- •9.6.3 Электронная теория
- •Содержание
- •7.4 Неравновесные электрохимические процессы
- •8. Химическая кинетика
- •9. Каталитические реакции
- •450062, Г. Уфа, ул. Космонавтов, 1.
- •453118, Г. Стерлитамак, пр. Октября, 2.
8.17 Особенности гетерогенных процессов
Гетерогенными называются процессы, происходящие на поверхности раздела соприкасающихся фаз. Сюда относятся такие химические процессы, как горение топлива, окисление металлов кислородом воздуха, реакции, протекающие на поверхности катализаторов, а также многие физические процессы: растворение газов и твердых тел в жидкостях, кристаллизация чистых жидкостей и растворов и др.
Скорость гетерогенных процессов зависит от размеров и состояния поверхности раздела фаз, а также от скорости их относительного движения. Гетерогенные процессы многостадийны. Кроме основного процесса, протекающего на поверхности раздела фаз, обязательны стадии подвода к этой поверхности исходных веществ и отвода от нее продуктов реакции. Ввиду того, что эти стадии протекают последовательно, скорость суммарного процесса определяется наиболее медленной стадией. Если определяющей стадией является химическая реакция на поверхности раздела фаз, то гетерогенный процесс описывается законами химической кинетики и, следовательно, протекает в кинетической области. Если, как это чаще бывает, наиболее медленно совершается подвод и отвод соответствующих веществ, то гетерогенный процесс описывается законами диффузии, т. е. он протекает в диффузионной области. Температура сильнее влияет на скорость химических процессов, чем на диффузию, поэтому гетерогенная химическая реакция при повышении температуры может перейти из кинетической области в диффузионную.
Диффузия имеет большое значение в гетерогенных процессах, поскольку за счет ее происходит изменение концентрации в приповерхностном слое, влияющее на кинетику процесса. Диффузия описывается законами Фика.
Первый
закон Фика
утверждает,
что масса вещества dm,
переносимого
путем диффузии в направлении оси х
через
перпендикулярную этому направлению
площадку, пропорциональна площади S
этой площадки, времени dt
и градиенту
концентрации
вдоль выбранного направления:
dm
= -DSdt
;
v
=
= -DS
где
D
- коэффициент диффузии;
- скорость
диффузии. Знак минус в уравнении указывает
на то, что процесс диффузии направлен
в сторону понижения концентрации.
Коэффициент диффузии зависит от температуры; для жидких и газовых сред он увеличивается с ростом температуры на 10° примерно на 20%. Характер зависимости D от температуры приближенно описывается уравнением D = Ве-Е/кт, аналогичным уравнению Аррениуса. Однако величина энергии активации диффузионного процесса обычно не превышает 5-20 кДж/моль, т. е. она значительно меньше энергии активации большинства химических реакций. Поэтому температура намного слабее влияет на скорость диффузионных процессов, чем химических.
Растворение твердых тел в жидкостях
А. Н. Щукаревым была экспериментально установлена следующая формула скорости растворения твердого тела в жидкости:
v = kS(cнас – с),
где S - величина поверхности соприкосновения твердого тела с жидкостью;
с - концентрация растворяющегося вещества в глубине жидкости; снас - концентрация насыщенного раствора; k - некоторый коэффициент, зависящий от температуры, природы тел и условий растворения. Уравнение показывает, что скорость растворения твердого тела тем больше, чем больше величина поверхности соприкосновения фаз и разность между достигнутой в данный момент концентрацией и максимально возможной в рассматриваемых условиях.